You are here

Borsa Endeks Getirilerinde İkili Uzun Hafıza Analizi

Analyzing the Dual Long Memory in Stock Market Returns

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The purpose of this study is to examine the dual long memory properties for five stock market returns by using joint ARFIMA-FIGARCH model and structural break test in context of weak form efficient market hypothesis. The models are estimated by using daily closing prices for S&P500, FTSE100, DAX, CAC40 and ISE100. In an effort to assess the impact of structural breaks in volatility persistence, the breaks in variance are detected by using the Iterated Cumulative Sums of Squares (ICSS) algorithm, and dummy variables are incorporated to the models. Empirical findings show that the dual long memory exists for all stock markets. Also the volatility has a predictable structure and indicates that all stock markets are weak form inefficient. Further, it is found that incorporating information on structural breaks in variance improves the accuracy of estimating volatility dynamics and effectively reduces the persistence of volatility.
Abstract (Original Language): 
Bu çalışmanın amacı, zayıf formda etkin piyasa hipotezi bağlamında birleşik ARFIMA-FIGARCH modeli ve yapısal kırılma testi kullanarak beş farklı borsa endeks getiri serisi için ikili uzun hafıza özelliklerini incelemektir. Modeller S&P500, FTSE100, DAX, CAC40 ve ISE100 borsa endekslerinin günlük kapanış fiyatları kullanılarak test edilmiştir. Volatilite sürekliliği üzerinde yapısal kırılmaların etkilerini belirlemek üzere ICSS (Iterative Cumulative Sums of Squares) algoritması ile varyanstaki kırılmalar tespit edilmiş ve modellere kukla değişkenler olarak eklenmiştir. Analiz sonuçlarına göre, tüm borsalar için ikili uzun hafızanın bulunduğu anlaşılmıştır. Ayrıca volatilite-nin öngörülebilir yapı göstermesi nedeniyle tüm borsaların zayıf formda etkinsiz oldukları sonucuna varılmıştır. Bunun yanı sıra, varyanstaki yapısal kırılmaların modellere eklenme-siyle volatilite dinamiklerinin daha doğru hesaplandığı ve volatilite sürekliliğinin fiilen azaldığı saptanmıştır.



Aggarwal, R., Inclan, C. and Leal, R. (1999) “Volatility in
Emerging Stock Markets” Journal of Financial and Quantitative
Analysis, 34:33-55.
Ané, T. (2006) “An Analysis of the Flexibility of Asymmetric
Power GARCH Models” Computational Statistics and Data
Analysis, 51:1293-1311.
Baillie, R.T., Bollerslev, T. and Mikkelsen, H.O. (1996)
“Fractionally Integrated Generalized Autoregressive Conditional
Heteroscedasticity” Journal of Econometrics, 74:3–30.
Barkoulas, J.T., Baum, C.F., Travlos, N. (2000) “Long
Memory in the Greek Stock Market” Applied Financial Economics,
Bollerslev, T. (1987) “A Conditionally Heteroskedastic Time
Series Model for Speculative Prices and Rates of Return” Review
of Economics and Statistics, 69(3):542-547.
Cheong, C.W., Isa, Z. and Nor, A.H.S.M. (2008) “Fractionally
Integrated Time-varying Volatility under Structural
Break: Evidence from Kuala Lumpur Composite Index” Sains
Malaysiana, 37(4):405-411.
Cheung, Y.W. (1993) “Tests for Fractional Integration:
A Monte Carlo Investigation” Journal of Time Series Analysis,
Choi, K. and Zivot, E. (2007) “Long Memory and Structural
Changes in the Forward Discount: An Empirical Investigation”
Journal of International Money and Finance, 26:342-363.
Ding, Z., Granger, C.W.J. and Engle, R.F. (1993) “A Long
Memory Property of Stock Market Returns and A New Model”
Journal of Empirical Finance, 1:83–106.
Engle, R.F. (1982) “Autoregressive Conditional Heteroscedasticity
with Estimates of The Variance of United Kingdom
Inflation” Econometrica, 50(4):987-1007.
Eoma, C., Choi, S., Oh, G. and Jung, W.S. (2008) “Hurst
Exponent and Prediction Based on Weak-form Efficient Market
Hypothesis of Stock Markets” Physica A, 387:4630–4636.
Fama, E.F. (1970) “Efficient Capital Markets: A Review of
Theory and Empirical Work” Journal of Finance, 25:383–417.
Granger, C. and Joyeux, R. (1980) “An Introduction to
Long Memory Time Series Models and Fractional Differencing”
Journal of Time Series Analysis, 1:15–39.
Härdle, W.K. and Mungo, J. (2008) “Value-at-Risk and Expected
Shortfall When There Is Long Range Dependence” SFB
649 ‘Economic Risk’ Discussion Paper, 6:1-39.
Hosking, J.R.M. (1981) “Fractional Differencing” Biometrika,
68: 165-176.
Inclan, C. and Tiao, G.C. (1994) “Use of Cumulative Sums
of Squares for Retrospective Detection of Changes in Variance”
Journal of the American Statistic Association, 89:913–923.
Jorion, P. (2007) Value at Risk: The New Benchmark for Managing
Financial Risk, 3rd Edition, New York, McGraw Hill Inc.
Kang, S.H. and Yoon, S.M. (2007) “Long Memory Properties
in Return and Volatility: Evidence from the Korean Stock
Market” Physica A, 385:591-600.
Kang, S.H., Chob, H.G. and Yoon, S.M. (2009) “Modeling
Sudden Volatility Changes: Evidence from Japanese and Korean
Stock Markets” Physica A, 388:3543-3550.
Karanasos, M. and Kartsaklas, A. (2009) “Dual Long-Memory,
Structural Breaks and The Link Between Turnover and The
Range-Based Volatility” Journal of Empirical Finance, 16(5):838-
Kasman, A. (2009) “The Impact of Sudden Changes on the
Persistence of Volatility: Evidence from The BRIC Countries”
Applied Economics Letters, 16:759-764.
Kasman, A., Kasman, S. and Torun, E. (2009) “Dual Long
Memory Property in Returns and Volatility: Evidence from the
CEE Countries’ Stock Markets” Emerging Markets Review, 10:
Kasman, A. and Torun, E. (2007) “Long Memory in the
Turkish Stock Market Return and Volatility” Central Bank Review,
Korkmaz, T., Çevik, E.İ. and Özataç, N. (2009) “Testing for
Long Memory in ISE Using ARFIMA-FIGARCH Model and
Structural Break Test” International Research Journal of Finance
and Economics, 26:1450-2887.
Kupiec, P.H. (1995) “Techniques for Verifying the Accuracy
of Risk Measurement Models” Journal of Derivatives, 3:73–84.
Lambert, P. and Laurent, S. (2001) “Modelling Financial
Time Series Using GARCH-Type Models with a Skewed
Student Distribution for The Innovations” Discussion Paper,
Malik, F. and Hassan, S.A. (2004) “Modeling Volatility in
Sector Index Returns with GARCH Models Using An Iterated
Algorithm” Journal of Economics and Finance, 28(2): 211-225.
Mun, H.W., Sundaram, L. and Yin, O.S. (2008) “Leverage
Effect and Market Efficiency of Kuala Lumpur Composite
Index” International Journal of Business and Management, 3(4):
Pooter, M. and Dijk, D.V. (2004) “Testing for Changes in
Volatility in Heteroskedastic Time Series – A Further Examination”
Econometric Institute Report EI 2004-38:1-39.
Tang, T. and Shieh, S.J. (2006) “Long Memory in Stock
Index Futures Markets: A Value-at-Risk Approach” Physica A,
Vougas, D. (2004) “Analysing Long Memory and Volatility
of Returns in the Athens Stock Exchange” Applied Financial
Economics, 14:457-460.

Thank you for copying data from