You are here

Kayıp Verilerin Varlığında Çoktan Seçmeli Testlerde Madde ve Test Parametrelerinin Kestirilmesi: SBS Örneği

Item and Test Parameters Estimations for Multiple Choice Tests in the Presence Of Missing Data: The Case of SBS4

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Missing data can be defined as the absence of an intended observation. Missing data is very common and widespread when collecting data for research, especially within the behavioral and social sciences. Some participants may miss the questions unconsciously, omit some questions consciously, or just refuse to answer. As another example, the loss of data is frequently seen in longitudinal studies. Some participants die or move from one place to another. Sometimes missing data occurs due to measurement tools or the application itself. Questions or items may not be understandable or readable. The conditions of the application may not be eligible. Due to these reasons, missing data can occur in data sets. Naturally, it is not possible to make any inference towards the measured trait if there is an absence of an intended observation. Loss of data leads to a range contraction in the data set and a representativeness problem of the sample. In the presence of missing data, estimations may include significant bias and the power of statistical analysis may diminish. Researchers usually tend to study complete data sets. However, it is often quite difficult to obtain complete data sets. Missing data makes the researchers’ job quite difficult. Missing data is an important problem in statistical analysis. Moreover, handling missing data is not easy because of the nature of the standard statistical methods developed in the early 20th century. These still widely-used methods usually need the complete data sets and don’t provide any successive solutions for missing data. Since the 1970s, many methods have been developed for dealing with missing data. These methods can be classified into four categories: methods based on deletion, methods based on simple imputation, methods based on maximum likelihood and methods based on multiple imputation. Methods based on deletion and simple imputation are defined as traditional methods. These traditional methods are now used in much statistical software. Other complicated methods include more complex algorithms and require special software. Missing data patterns and mechanisms are crucial in determining the appropriate methods of handling missing data problems. Traditional methods based on deletion and simple imputation can be used if the missing data mechanism is defined as completely random. The methods based on maximum likelihood and multiple imputation can be used if the missing data mechanism is defined as completely random or partially random. There is no meaning to use most of the missing data methods if the mechanism is not ignorable. Estimations especially may include significant bias if missing data mechanisms are not met randomly and if there are a lot of missing data in the data set. Multiple choice tests are usually composed of dichotomously scored items. In this type of categorical data, it is more difficult to deal with the missing data problem. Welldefined prior knowledge for the nature of the lost data is needed. Missing data mechanisms must be examined in detail. An appropriate missing data method has to be determined and used to minimize the possibility of missing data bias. In this study, by using different missing data methods, estimations of item and test parameters for multiple choice tests composed of dichotomously scored items are examined. Its aim is to determine the available and unavailable missing value methods for these kinds of tests.
Abstract (Original Language): 
Bu çalışmada, kayıp verilerin varlığında, çoktan seçmeli testlerde, farklı kayıp veri yöntemleri kullanılarak kestirilen madde ve test parametreleri arasındaki ilişkilerin incelenmesi ve bu tür testlerde kullanılması uygun olan kayıp veri yöntemlerinin belirlenmesi amaçlanmıştır. Temel araştırma türünde, ilişkisel tarama modelinde bir araştırma olarak tasarlanan bu çalışmada, analizler 527517 yanıtlayıcıya yönelik SBS (Seviye Belirleme Sınavı) 2011 Matematik Testi A Kitapçığı verileri üzerinde yürütülmüştür. Veri analizlerinde silmeye dayalı yöntemlerden ‘dizin silme yöntemi’, basit atama yöntemlerinden ‘0 atama’, ‘seri ortalamaları ataması’, ‘gözlem birimi ortalaması ataması’, ‘yakın noktalar ortalama ataması’, ‘yakın noktalar medyan ataması’, ‘doğrusal interpolasyon’ ve ‘dorusal eğilim noktası ataması’ yöntemleri, en çok olabilirlik yöntemlerinden ‘regresyon atama’, ‘beklenti-maksimizasyon algoritması’ ve ‘veri çoğaltma’ yöntemleri, çoklu veri atama yöntemlerinden ise ‘Markov zincirleri Monte Carlo’ yöntemi olmak üzere 12 farklı kayıp veri yöntemi kullanılmıştır. Elde edilen bulgular, kayıp verilerin ihmal edilebilir olmaması durumunda çoktan seçmeli testlere yönelik istatistiksel kestirimlerde, uygun bir kayıp veri yönteminin kullanılmasının gerekli olduğunu göstermektedir. Silmeye dayalı yöntemler ve 0 Atama yöntemi, bu tür veriler için uygun yöntemler değildir. Basit atama yöntemlerinin ise yanlı kestirimler üretme olasılığı yüksektir. En çok olabilirlik ve çoklu veri atama yöntemleri, bu tür verilerde kullanılması en uygun kayıp veri yöntemleri olarak değerlendirilmektedir.

REFERENCES

References: 

Acock, A. A. (2005). Working with missing values. Journal of Marriage and Family, 65, 1012-
1028.
Allison, P. D. (2002). Missing data. California: Sage Publication, Inc.
Allison, P. D. (2009). Missing data. Quantitative methods in psychology. (Edt: R. E. Millsao & A.
Maydeu-Olivares). London: SAGE Publication. pp. 72-89.
Baykul, Y. (2000). Eğitimde ve psikolojide ölçme: Klasik test teorisi ve uygulaması. Ankara: ÖSYM
Yayınları.
Crocker, L. & Algina, J. (1986). Introduction to classical and modern test theory. Belmont CA:
Wadsworth Thomson Learning Company.
Eğitim Bilimleri Araştırmaları Dergisi – Journal of Educational Sciences Research
65
Culbertson, M. J. (2011). Is it wrong? Handling missing responses in IRT. Annual Meeting of
the National Council on Measurement in Education, April 2011.
DeMars, C. (2002). Incomplete data and item parameter estimates under JMLE and MML
estimation. Applied Measurement in Education, 15, 15-31.
Demir, E. & Parlak, B. (2012). Türkiye’de eğitim araştırmalarında kayıp veri sorunu. Eğitimde
ve Psikolojide Ölçme ve Değerlendirme Dergisi, 3 (1), 20-241.
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood estimation from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39 (B), 1-
38.
Elashoff, J. D. & Elashoff, R. M. (1971). Missing data problems for two samples on a
dichotomous variable. Research and Development Memorandum, 73, 40-86.
Enders, C. K. (2010). Applied missing data analysis. New York: The Guilford Press.
Finch, H. (2008). Estimation of item response theory parameters in the presence of missing
data. Journal of Educational Measurement, 45 (3), 225-245.
Graham, J. W. (2009). Missing data analysis: making it work in the real world. Annual Review
of Psychology, 60 (4), 549-576.
Groves, R. M. (2006). Nonresponse rates and nonresponse bias in household surveys. Public
Opinion Quarterly, 70 (5), 646-675.
Hohensinn, C. & Kubinger K. D. (2011). On the impact of missing values on item fit and the
model validness of the Rasch model. Psychological Test and Assessment Modeling, 53,
380-393.
Linacre, J. M. (2004). Rasch model estimation: further topics. Journal of Applied Measurement, 5
(1), 95-110.
Little, R. J. A & Rubin, D. B. (1987). Statistical analysis with missing data, 2nd ed. New York:
John Wiley & Sons, Inc.
Lord, F. M. (1974). Estimation of latent ability and item parameters when there are omitted
responses. Psychometrika, 39, 247-264.
Lord, F. M. (1983). Maximum likelihood estimation of item response parameters when some
responses are omitted. Psychometrika, 48, 477-482.
Lord, F. M. & Novick, M. R. (1968). Statistical theory of mental test score. California: Addison-
Wesley Publishing.
Mislevy, R. J. & Wu, P. K. (1996). Missing responses and IRT ability estimation: omits, choice, time
limits, adaptive testing. ETS Research Report RR-96-30-ONR, Princeton, NJ:
Educational Testing Service.
Özçelik, D. A. (1981). Okullarda ölçme ve değerlendirme. Ankara: ÜSYM-Eğitim Yayınları:3.
Puma, M. J., Olsen, R. B., Bell, S. H. & Price, C. (2009). What do when data are missing in group
randomized controlled trial (NCE 2009-0049). Washington, DC: National Center for
Education Evaluation and Regional Assistance, Institute of Educational Sciences, U.S.
Department of Education.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581-592.
Rubin, D. B. (1987). Multiple ımputation for nonresponse in surveys. New York: John Wiley &
Sons, Inc.
Schaffer, J. L. (1997). Analysis of ıncomplete multivariate data. London: Chapman & Hall.
Tekin, H. (2007). Eğitimde ölçme ve değerlendirme (18. baskı). Ankara: Yargı Yayınları.

Thank you for copying data from http://www.arastirmax.com