You are here

Stochastic Convergence in Per Capita Carbon Dioxide (CO2) Emissions: Evidence from OECD Countries

Journal Name:

Publication Year:

DOI: 
https://doi.org/10.17015/ejbe.2016.018.07
Abstract (2. Language): 
This study analyzes the validity of stochastic convergence hypothesis in relative per capita CO2 emissions in OECD (Organization for Economic Cooperation and Development) countries for the period 1960-2013. In other words, it is aimed to reveal the nature of shocks to relative per capita CO2 emissions. As such, divergence holds if shocks are permanent, whereas convergence holds if shocks are temporary. To that aim, the two-break LM (Lagrange multiplier) and three-step RALS-LM (residual augmented least squares Lagrange multiplier) unit root tests are employed. The results mostly provide evidence of convergence in case of two breaks. However, when structural breaks are not taken into consideration, divergence gains empirical validity. From the viewpoint of government policy, these results indicate that energy usage or environmental protection policies of OECD countries have not long-run impacts on the relative per capita emissions series of the sample countries. Concerning the break dates, the first breaks mostly cumulated around the two energy crises period, whereas the second breaks generally occurred in the 1990s.
113
134

JEL Codes:

REFERENCES

References: 

Aldy, J.E. (2005). Per Capita Carbon Dioxide Emissions: Convergence or Divergence. Resource
for the Future (RFF) Discussion Paper 05-53. http://dx.doi.org/10.1007/s10640-005-6160-x
Aldy, J.E. (2006). Divergence in State Level Per Capita Carbon Dioxide Emissions. Discussion
Paper RFF DP 06-07. Washington. https://doi.org/10.2139/ssrn.881088
Stochastic Convergence in Per Capita CO2 Emissions: Evidence from OECD Countries
EJBE 2016, 9 (18) Page | 131
Amsler, C., & Lee, J. (1995). An LM test for a unit root in the presence of a structural change.
Econometric Theory 11. 359–368. http://dx.doi.org/10.1017/S026646660000921X
Anaruo, E. (2014). Carbon Dioxide Emissions among African Countries: An Application of the
Sequential Panel Selection Method. Research in Applied Economics. Vol.6, No.2.
http://dx.doi.org/10.5296/rae.v6i2.5118
Bai, J., & Ng, S. (2004). A Panic attack on unit roots and cointegration. Econometrica, 72.
1127–1177. http://dx.doi.org/10.1111/j.1468-0262.2004.00528.x
Barassi, M.R., Cole, M.A., & Elliott, R.J.R. (2008). Stochastic Divergence or Convergence of
Per Capita Carbon Dioxide Emissions: Re-examining the Evidence. Environmental Resource
Economics, 40, 121–137. http://dx.doi.org/10.1007/s10640-007-9144-1
Barassi, M.R., Cole, M.A., & Elliott, R.J.R. (2011). The Stochastic Convergence of
Emissions: A Long Memory Approach. Environmental and Resource Economics, 49. 367-385.
http://dx.doi.org/10.1007/s10640-010-9437-7
Breuer, B., McNown, R., & Wallace, M. (2001). Misleading inference form panel unit root
tests with an illustration from purchasing power parity. Review of International Economics, 9,
482–93. https://doi.org/10.1111/1467-9396.00294
Breuer, B., McNown, R., & Wallace, M. (2002). Series specific unit root test with panel data.
Oxford Bulletin of Economics and Statistics, 64(5), 27–46. http://dx.doi.org/10.1111/1468-
0084.00276
Camarero, M., Mendoza, Y., & Ordoñez., J. (2011). Re-examining emissions. Is assessing
convergence meaningless? Department of Applied Economics II Universidad de Valencia
Working Papers, 2011-04.
Carlino, G., & Mills, L. (1993). Are U.S. Regional Economies Converging? A Time Series
Analysis. Journal of Monetary Economics, 32, 335–346. http://dx.doi.org/10.1016/0304-
3932(93)90009-5
Carrion-i-Silvestre, J.L., Barrio-Castro, T.D., & Lopez-Bazo, E. (2005). Breaking the panels: an
application to the GDP per capita. Econometrics Journal, 8, 159–175.
http://dx.doi.org/10.1111/j.1368-423X.2005.00158.x
Chang, C.P., & Lee, C.C. (2008). Are per capita carbon dioxide emissions converging among
industrialized countries? New time series evidence with structural breaks. Environment and
Development Economics. 13. 497-515. http://dx.doi.org/10.1017/S1355770X08004361
Criado, C.O., & Grether, J.M. (2011). Convergence in per capita CO2 emissions: A robust
distributional approach. Resource and Energy Economics, 33, 637–665.
http://dx.doi.org/10.1016/j.reseneeco.2011.01.003
Dickey, D.A., & Fuller, W.A. (1981). Distribution of the estimators for autoregressive time
series with a unit root. Econometrica, 49, 1057-72.
http://dx.doi.org/10.1080/01621459.1979.10482531
Elliot, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an autoregressive unit
root. Econometrica, 64, 813–36. http://dx.doi.org/10.3386/t0130
El-Montasser, G., Inglesi-Lotz, R., & Gupta, R. (2015). Convergence of greenhouse gas
emissions among G7 countries. Applied Economics, 47(60). 6543-6552.
http://dx.doi.org/10.1080/00036846.2015.1080809
Ezcurra, R. (2007). Is there cross-country convergence in carbon dioxide emissions? Energy
Policy, 35, 1363–1372. http://dx.doi.org/10.1016/j.enpol.2006.04.006
Burcu OZCAN & Esma GULTEKIN
Page | 132 EJBE 2016, 9 (18)
Herrerias, M.J. (2012). CO2 weighted convergence across the EU-25 countries (1920–2007).
Applied Energy, 92, 9–16. http://dx.doi.org/10.1016/j.apenergy.2011.10.034
Im, K.S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels.
Journal of Econometrics. 115. 53-74. http://dx.doi.org/10.1016/S0304-4076(03)00092-7
Jobert, T., Karanfil, F., & Tykhonenko, A. (2010). Convergence of per capita carbon dioxide
emissions in the EU: Legend or reality? Energy Economics. 32. 1364–1373.
http://dx.doi.org/10.1016/j.eneco.2010.03.005
Kapetanios, G., Shin, Y., & Snell, A., (2003). Testing for a unit root in the nonlinear star
framework. Journal of Econometrics. 112. 359–379. http://dx.doi.org/10.1016/S0304-
4076(02)00202-6
Lanne, M., & Liski, M. (2004). Trends and Breaks in per-capita Carbon Dioxide Emissions,
1870 2028. The Energy Journal. Vol.25. No.4. 41-66. https://doi.org/10.5547/ISSN0195-6574-
EJ-Vol25-No4-3
Lee, C.C., Chang, C.P., & Chen, P.F. (2008). Do CO2 emission levels converge among 21 OECD
countries? New evidence from unit root structural break tests. Applied Economics Letters.
15. 551-556. http://dx.doi.org/10.1080/13504850500426236
Lee, C.C., & Chang, C.P. (2008). New evidence on the convergence of per capita carbon
dioxide emissions from panel seemingly unrelated regressions augmented Dickey-Fuller
tests. Energy. 33. 1468– 1475. http://dx.doi.org/10.1016/j.energy.2008.05.002
Lee, C.C., & Chang, C.P., (2009). Stochastic convergence of per capita carbon dioxide
emissions and multiple structural breaks in OECD countries. Economic Modelling. 26. 1375–
1381. http://dx.doi.org/10.1016/j.econmod.2009.07.003
Lee, C.C., & Lee, J.D. (2009). Income and CO2 emissions: Evidence from the panel unit root
and cointegration tests. Energy Policy, 37, 413-423.
http://dx.doi.org/10.1016/j.enpol.2008.09.053
Lee, J., & Strazicich, M.C. (2003). Minimum LM unit root test with two structural breaks.
Review of Economics and Statistics, 85, 1082-1089.
http://dx.doi.org/10.1162/003465303772815961
Lee, J., Strazicich, M.C., & Meng, M. (2012). Two-Step LM Unit Root Tests with Trend-Breaks.
Journal of Statistical and Econometric Methods, 1, 81-107.
Lee. J., & Strazicich, M.C. (2004). Minimum LM Unit Root Test with One Structural Break.
Working Paper 04-17. Department of Economics. Appalachian State University.
Li, X., & Lin, B. (2013). Global convergence in per capita CO2 emissions. Renewable and
Sustainable Energy Review, 24, 357–363. http://dx.doi.org/10.1016/j.rser.2013.03.048
List, J. (1999). Have air pollutant emissions converged among U.S. regions? Evidence from
unit root test. Southern Economic Journal, 66, 144–155. http://dx.doi.org/10.2307/1060840
Lumsdaine, R.L., & Papell, D.H. (1997). Multiple Trend Breaks and the Unit Root Hypothesis.
Review of Economics and Statistics, 79, 212-218.
http://dx.doi.org/10.1162/003465397556791
McKitrick, R., & Strazicich, M.C. (2005). Stationarity of Global Per Capita Carbon Dioxide
Emissions: Implications for Global Warming Scenarios. Working Papers 0503, University of
Guelph, Department of Economics. http://dx.doi.org/10.1002/for.2248
Meng, M., & Lee, J. (2012). More powerful LM unit root tests with trend-breaks in the
presence of non-normal errors. (Working Paper). USA: University of Alabama.
Stochastic Convergence in Per Capita CO2 Emissions: Evidence from OECD Countries
EJBE 2016, 9 (18) Page | 133
Meng, M., Payne, J.E., & Lee, J. (2013). Convergence in per capita energy use among OECD
countries. Energy Economics. 36, 536–545. http://dx.doi.org/10.1016/j.eneco.2012.11.002
Moon, H.R., & Perron, B. (2004). Testing for a unit root in panels with dynamic factors.
Econometrics Journal, 122, 81–126. http://dx.doi.org/10.1016/j.jeconom.2003.10.020
Nguyen-Van, P. (2005). Distribution Dynamics of CO2 Emissions. Thema Working Papers
2005-10. Université de Cergy-Pontoiseç.
Nourry, M. (2009). Re-Examining the Empirical Evidence for Stochastic Convergence of Two
Air Pollutants with a Pair-Wise Approach. Environmental Resources Economy, 44, 555-570.
http://dx.doi.org/10.1007/s10640-009-9301-9
Nunes, L., Newbold, P., & Kuan, C. (1997). Testing for unit roots with breaks: Evidence on the
great crash and the unit root hypothesis reconsidered. Oxford Bulletin of Economics and
Statistics, 59, 435-448. http://dx.doi.org/10.1111/1468-0084.00076
Oliveira, G., & Vargas Mores, G. (2015). Convergence in per capita carbon dioxide emissions:
a panel data approach. Working Paper 2015-35. Department of Economics. FEA-USP.
Ozcan, B. & Erdogan, S. (2015). Are Turkey's tourism markets converging? Evidence from the
two-step LM and three-step RALS-LM unit root tests. Current Issue in Tourism, 1-18.
http://dx.doi.org/10.1080/13683500.2015.1040741
Ozcan, B. (2013). The nexus between carbon emissions, energy consumption and economic
growth in Middle East countries: A panel data analysis. Energy Policy, 62, 1138-1147.
http://dx.doi.org/10.1016/j.enpol.2013.07.016
Panopoulou, E., & Pantelidis, T. (2009). Club Convergence in Carbon Dioxide Emissions.
Environmental Resource Economics, 44, 47–70. http://dx.doi.org/10.1007/s10640-008-9260-
6
Payne, J.E., Miller, S., Lee, J., & Cho, M.H. (2014). Convergence of per capita Sulphur dioxide
emissions across US states. Applied Economics, (46)11. 1202-1211.
http://dx.doi.org/10.1080/00036846.2013.868588
Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis.
Econometrica. 57. 1361–1401. http://dx.doi.org/10.2307/1913712
Perron, P., & Vogelsang, T. (1992). Nonstationarity and level shifts with application to
purchasing power parity. Journal of Business & Economic Statistics, 10, 301-320.
http://dx.doi.org/10.2307/1391544
Pesaran, M.H. (2007). A pair-wise approach to testing for output and growth convergence.
Journal of Econometrics, 138, 312–55. http://dx.doi.org/10.1016/j.jeconom.2006.05.024
Phillips, P.C.B., & Sul, D. (2003). Dynamic panel estimation and homogeneity testing under
cross section dependence. Econometrics Journal, 6, 217–259.
http://dx.doi.org/10.1111/1368-423X.00108
Phillips, P.C.B., & Sul. D. (2007). Transition modeling and econometric convergence tests.
Econometrica, 75, 1771–1855. http://dx.doi.org/10.1111/j.1468-0262.2007.00811.x
Presno, M.J., Landoja, M., & Fernández, P. (2015). Stochastic Convergence in Per Capita CO2
Emissions. An Approach from Nonlinear Stationarity Analysis. Energy Economics.
http://dx.doi.org/10.1016/j.eneco.2015.10.001.
Quah, D.T. (1993). Galton’s fallacy and tests of the convergence hypothesis. Scandinavian
Journal of Economics, 95, 427–443. http://dx.doi.org/10.2307/3440905
Burcu OZCAN & Esma GULTEKIN
Page | 134 EJBE 2016, 9 (18)
Quah, D.T. (1996). Empirics for economic growth and convergence. European Economic
Review, 40, 1353–1375. http://dx.doi.org/10.1016/0014-2921(95)00051-8
Quah, D.T. (1997). Empirics for growth and distribution: stratification, polarization, and
convergence clubs. Journal of Econ Growth, 2, 27–59.
http://dx.doi.org/10.1023/A:1009781613339
Romero-Avila, D. (2008). Convergence in carbon dioxide emissions among industrialized
countries revisited. Energy Economics, 30, 2265–2282.
http://dx.doi.org/10.1016/j.eneco.2007.06.003
Schmidt, P., & Phillips, P. (1992). LM tests for a unit root in the presence of deterministic
trends, Oxford Bulletin of Economics and Statistics, 54, 257–287.
http://dx.doi.org/10.1111/j.1468-0084.1992.tb00002.x
Sen, A. (2003). On unit-root tests when the alternative is a trend-break stationary process.
Journal of Business and Economics Statistics, 21, 174-84.
http://dx.doi.org/10.1198/073500102288618874
Solarin, S.A. (2014). Convergence of CO2 Emission Levels: Evidence from African Countries.
Journal of Economic Research, 19, 65-92. http://dx.doi.org/10.17256/jer.2014.19.1.004
Stegman, A. (2005). Convergence in Carbon Emissions Per Capita. Brookings discussion
papers in international economics 167.
Strazicich, M., & List, J. (2003). Are emission levels converging among industrial
countries? Environmental Resource Economics, 24, 263–271.
http://dx.doi.org/10.1023/A:1022910701857
Vogelsang, T.J., & Perron, P. (1998). Additional Tests for a Unit Root Allowing for a Break in
the Trend Function at an Unknown Time. International Economic Review, 39, 1073-1100.
http://dx.doi.org/10.2307/2527353
Westerlund, J., & Basher, S. (2008). Testing for convergence in carbon dioxide emissions
using a century of panel data. Environmental and Resource Economics, 40, 109-120.
http://dx.doi.org/10.1007/s10640-007-9143-2
World Bank. (2015). World Development Indicator Database
Wu, J., Wu, Y., Guo, X., & Cheong, T. S. (2016). Convergence of carbon dioxide emissions in
Chinese cities: A continuous dynamic distribution approach. Energy Policy, 91, 207-219.
http://dx.doi.org/10.1016/j.enpol.2015.12.028
Yavuz, N.C., & Yilanci, V. (2012). Convergence in Per Capita Carbon Dioxide Emissions Among
G7 Countries: A TAR Panel Unit Root Approach. Environmental Resource Economics, 54(2),
283-291 http://dx.doi.org/10.1007/s10640-012-9595-x
Zivot, E., & Andrews, D.W.K. (1992). Further evidence on the Great Crash, the oil price shock
and the unit root hypothesis. Journal of Business and Economic Statistics, 10, 251–70.
http://dx.doi.org/10.2307/1391541

Thank you for copying data from http://www.arastirmax.com