You are here

Long Memory and Fractional Differencing: Revisiting Clive W. J. Granger's Contributions and Further Developments

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
In 1980, Sir Clive W. J. Granger discovered the fractional differencing operator and its fundamental properties in discrete-time mathematics, which sparked an enormous literature concerning the fractionally integrated autoregressive moving average models. Fractionally integrated models capture a type of long memory and have useful theoretical properties, although scientists can find them difficult to estimate or intuitively interpret. His introductory papers from 1980, one of which with Roselyne Joyeux, show his early and deep understanding of this subject by showing that familiar short memory processes can produce long memory effects under certain conditions. Moreover, fractional differencing advanced our understanding of cointegration and the properties of traditional Dickey-Fuller tests, and motivated the development of new unit-root tests against fractional alternatives. This article honors his significant contributions by identifying key areas of research he inspired and surveying recent developments in them.
82
103

REFERENCES

References: 

[1] K. M. Abadir, W. Distaso, and L. Giraitis. Nonstationarity extended local whittle estimation. Journal of Econometrics, 141:1353-1384, 2007.
[2] C. Agiakloglou and P. Newbold. Lagrange multiplier tests for fractional difference. Journal of Time Series Analysis, 15:253-262, 1994.
[3] C. Agiakloglou, P. Newbold, and M. Wohar. Bias in an estimator of the fractional difference parameter. Journal of Time Series Analysis, 14:235-246, 1992.
[4] S. Alizadeh, M. W. Brandt, and F. X. Diebold. Range-based estimation of stochastic volatility models. Journal ofFinance, 57(3):1047-1091, 2002.
REFERENCES 95
[5] T. G. Andersen and T. Bollerslev. Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. Journal of
Finance, 52:975-1005, 1997.
[6] T. G. Andersen, T. Bollerslev, P. F. Christoffersen, and F. X. Diebold. Volatility and correlation forecasting. In G. Elliott, C. W. J. Granger, and A. Timmermann, editors, Handbook ofEconomic Forecasting, pages 778-878. Elsevier, 2006.
[7] D. W. Andrews and O. Lieberman. Valid edgeworth expansions for the whittle max¬imum likelihood estimator for stationary long-memory gaussian time series. Econo¬metric Theory, 21:710-734, 2005.
[8] D. W. Andrews, O. Lieberman, and V. Marmer. Higher-order improvements of the parametric bootstrap for long-memory gaussian processes. Journal ofEconometrics,
133:673-702, 2006.
[9] N. M. P. C. Areal and S. J. Taylor. The realized volatility of ftse-100 futures prices.
Journal ofFutures Markets, 22:627-648, 2002.
[10] R. T. Baillie and T. Bollerslev. The long memory of the forward premium. Journal ofInternational Money and Finance, 13:565-571, 1994.
[11] R. T. Baillie and T. Bollerslev. Cointegration, fractional cointegration, and exchange rate dynamics. Journal ofFinance, 49:737-745, 1994.
[12] R. T. Baillie, C. F. Chung, and M. A. Tieslau. Analyzing inflation by the fractionally integrated arfima-garch model. Journal of Applied Econometrics, 11:23-40, 1996.
[13] Richard T. Baillie, Chaleampong Kongcharoen, and George Kapetanios. Predic¬tion from arfima models: Comparisons between mle and semiparametric estimation procedures. International Journal ofForecasting, 28:46-53, 2012.
[14] Richard T. Baillie, George Kapetanios, and Fotis Papailias. Bandwidth selection by cross-validation for forecasting long memory financial time series. Journal of Empirical Finance, 29:129-143, 2014.
[15] F. M. Bandi and B. Perron. Long memory and the relation between implied and realized volatility. Journal ofFinancial Econometrics, 4:636-670, 2006.
[16] O. E. Barndorff-Nielsen and N. Shephard. Non-gaussian ornstein-uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society Series B-Statistical Methodology, 63:167-207, 2001.
[17] O. E. Barndorff-Nielsen and N. Shephard. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal ofthe Royal Statistical
Society Series B, 64:253-280, 2002.
REFERENCES 96 [18] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal
ofPolitical Economy, 81:637-654, 1973.
[19] Tim Bollerslev and Hans Ole Mikkelsen. Modeling and pricing long memory in stock market volatility. Journal ofEconometrics, 73(1):151-184, July 1996.
[20] J. Breitung and U. Hassler. Inference on the cointegration rank in fractionally integrated processes. Journal ofEconometrics, 110:167-185, 2002.
[21] J. Campos, N. R. Ericsson, and D. F. Hendry. Cointegration tests in the presence of structural breaks. Journal ofEconometrics, 70:187-220, 1996.
[22] G. M. Caporale and L. A. Gil-Alana. Long memory and fractional integration in high frequency data on the us dollar/british pound spot exchange rate. International Review of Financial Analysis, 29:1-9, 2013.
[23] J. L. Castle, N. W. P. Fawcett, and D. F. Hendry. Forecasting with equilibrium-correction models during structural breaks. Journal of Econometrics, 158:25-36,
2010.
[24] J. L. Castle, J. A. Doornik, D. F. Hendry, and F. Pretis. Detecting location shifts during model selection by step-indicator saturation. Econometrics, 3:240-264, 2015.
[25] Giuseppe Cavaliere, Morten 0rregaard Nielsen, and A. M. R. Taylor. Bootstrap score test for fractional integration in heteroskedastic arfima models, with an application to price dynamics in commodity spot and futures markets. Journal ofEconometrics, 187:557-579, 2015.
[26] K. Choi, W. C. Yu, and E. Zivot. Long memory versus structural breaks in modeling and forecasting realized volatility. Journal ofInternational Money and Finance, 29:
857-875, 2010.
[27] G. Chortareas, Y. Jiang, and J. C. Nankervis. Forecasting exchange rate volatility using high-frequency data: Is euro different? International Journal of Forecasting, 27:1089-1107, 2011.
[28] B. Christensen and M. Nielsen. Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting. Journal of Econometrics, 133:343-371, 2006.
[29] C. F. Chung and R. T. Baillie. Small sample bias in conditional sum of squared estimators of fractionally integrated arma models. Empirical Economics, 18:791¬806, 1993.
[30] M. P. Clements and D. F. Hendry. Forecasting Economic Time Series. Cambridge University Press, 1998.
REFERENCES 97
[31] F. Corsi. A simple approximate long-memory model of realized volatility. Journal ofFinancial Econometrics, 7:174-196, 2009.
[32] V. Dalla, L. Giraitis, and J. Hidalgo. Consistent estimation of the long memory parameter for nonlinear time series. Journal ofTime Series Analysis, 27:211-251,
2006.
[33] J. Davidson. A model for fractional cointegration, and tests for cointegration using the bootstrap. Journal ofEconometrics, 110:187-212, 2002.
[34] J. Davidson. Alternative bootstrap procedures for testing cointegration in fraction¬ally integrated processes. Journal ofEconometrics, 133:741-777, 2006.
[35] J. Davidson and R. M. de Jong. The functional central limit theorem and weak convergence to stochastic integrals ii: Fractionally integrated processes. Econometric
Theory, 2000.
[36] J. Davidson and N. Hashimzade. Alternative frequency and time domain versions of fractional brownian motion. Econometric Theory, 24:256-293, 2008.
[37] J. Davidson and N. Hashimzade. Type i and type ii fractional brownian motions: A reconsideration. Computational Statistics and Data Analysis, 53:2089-2106, 2009.
[38] J. Davidson and N. Hashimzade. Representation and weak convergence of stochastic integrals with fractional integrator processes. Econometric Theory, 25:1589-1624,
2009.
[39] S. Degiannakis, C. Floros, and P. Dent. Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence. International Review ofFinancial Analysis, 27:21-33, 2013.
[40] Matei Demetrescu, Vladimir Kuzin, and Uwe Hassler. Long memory testing in the time domain. Econometric Theory, 24:176-215, 2008.
[41] D. A. Dickey and W. A. Fuller. Distribution of estimators for autoregressive time series with a unit root. Journal ofthe American Statistical Association, 74:427-431,
1979.
[42] D. A. Dickey and W. A. Fuller. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49:1057-1072, 1981.
[43] F. X. Diebold and A. Inoue. Long memory and regime switching. Journal ofEcono-
metrics, 105:131-159, 2001.
[44] F. X. Diebold and G. D. Rudebusch. Long memory and persistence in aggregate output. Journal ofMonetary Economics, 24(2):189-209, 1989.
REFERENCES 98
[45] F. X. Diebold and G. D. Rudebusch. On the power of dickey-fuller tests against fractional alternatives. Economic Letters, 1991.
[46] Z. Ding, C. W. J. Granger, and R. F. Engle. A long memory property of stock market returns and a new model. Journal ofEmpirical Finance, 1:83-106, 1993.
[47] J. J. Dolado, J. Gonzalo, and L. Mayoral. A fractional dickey-fuller test for unit
roots. Econometrica, 70:1963-2006, 2002.
[48] J. A. Doornik and M. Ooms. Computational aspects of maximum likelihood estima¬tion of autoregressive fractionally integrated moving average models. Computational Statistics and Data Analysis, 42:333-348, 2003.
[49] R. F. Engle and C. W. J. Granger. Cointegration and error correction: Representa¬tion, estimation and testing. Econometrica, 55:251-276, 1987.
[50] R. F. Engle and G. G. J. Lee. A permanent and transitory component model ofstock return volatility. In R. F. Engle and H. White, editors, Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W. J. Granger, pages 475-497. Oxford University Press, 1999.
[51] I. Figuerola-Ferretti and J. Gonzalo. Modelling and measuring price discovery in commodity markets. Journal ofEconometrics, 158:95-107, 2010.
[52] J. Fleming and C. Kirby. Long memory in volatility and trading volume. Journal of Banking and Finance, 35:1714-1726, 2011.
[53] R. Fox and M. S. Taqqu. Large sample properties of parameter estimates for strong dependent stationary gaussian time series. Annals ofStatistics, 14:517-532, 1986.
[54] A. R. Gallant, C. T. Hsu, and G. E. Tauchen. Using daily range data to cali¬brate volatility diffusions and extract the forward integrated variance. Review of Economics and Statistics, 81:617-631, 1999.
[55] J. F. Garvey and L. A. Gallagher. The realized-implied volatility relationship: Re¬cent empirical evidence from ftse-100 stock. Journal of Forecasting, 31:639-660,
2012.
[56] J. Geweke and S. Porter-Hudak. The estimation and application of long memory time series. Journal of Time Series Analysis, 4(4):221-238, 1983.
[57] L. Giraitis and P. M. Robinson. Edgeworth expansions for semiparametric whittle estimation of long memory. Annals ofStatistics, 31:1325-1375, 2003.
[58] L. Giraitis and D. Surgailis. A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of whittle's estimate. Probability Theory and Related Fields, 86:87-104, 1990.
REFERENCES 99
[59] C. Gourieroux, F. Maurel, and A. Monfort. Least squares and fractionally integrated regressors. Technical report, Document de Travail No. 8913, INSEE, 1989.
[60] C. W. J. Granger. Long memory relations and the aggregation of dynamic models. Journal ofEconometrics, 14:227-238, 1980.
[61] C. W. J. Granger. Some properties of time series data and their use in econometric model specification. Journal of Econometrics, 16:121-130, 1981.
[62] C. W. J. Granger. Developments in the study of cointegrated economic variables. Oxford Bulletin ofEconomics and Statistics, 48:213-228, 1986.
[63] C. W. J. Granger. Implications of aggregation with common factors. Econometric
Theory, 3:208-222, 1987.
[64] C. W. J. Granger and N. Hyung. Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of Empirical
Finance, 11:399-421, 2004.
[65] C. W. J. Granger and Roselyne Joyeux. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1):
15-29, 1980. ISSN 1467-9892.
[66] N. Haldrup and M. O. Nielsen. Estimation of fractional integration in the presence of data noise. Computational Statistics and Data Analysis, 51:3100-3114, 2007.
[67] A. C. Harvey. Time Series Models. Harvester: Wheatsheaf, 2nd edition, 1993.
[68] A. C. Harvey. Long memory in stochastic volatility. In T. Knight and S. Satchell, editors, Forecasting Volatility in Financial Markets, pages 307-320. Butterworth-Heinemann, Oxford, 1998.
[69] A. C. Harvey. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Econometric Society Monograph. Cambridge University Press, 2013.
[70] U. Hassler and J. Wolters. On the power of unit root tests against fractionally integrated alternatives. Economic Letters, 45:1-5, 1994.
[71] U. Hassler, P. M. M. Rodrigues, and A. Rubia. Testing for general fractional inte¬gration in the time domain. Econometric Theory, 25:1793-1828, 2009.
[72] D. F. Hendry. The econometrics of macroeconomic forecasting. The Economic
Journal, 107:1330-1357, 1997.
[73] W. H. Hipel and A. I. McLeod. Preservation of the rescaled adjusted range. Parts 1-3, Water Resources Research, 14:491-518, 1978.
REFERENCES 100
[74] J. R. M. Hosking. Fractional differencing. Biometrika, 68(1):165-176, 1981.
[75] J. R. M. Hosking. Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20:1898-1908, 1984.
[76] H. E. Hurst. Long-term storage capacity of reservoirs. Transactions of the American
Society ofCivil Engineers, 116:770-799, 1951.
[77] S. Hylleberg and C. W. J. Granger. Seasonal integration and cointegration. Journal
ofEconometrics, 44:215-238, 1990.
[78] S. Johansen. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12:231-254, 1988.
[79] S. Johansen. A representation theory for a class of vector autoregressive models for fractional processes. Econometric Theory, 24:651-676, 2008.
[80] S. Johansen and M. 0. Nielsen. Likelihood inference for a nonstationary fractional autoregressive model. Journal ofEconometrics, 158:51-65, 2010.
[81] S. Johansen and M. 0 Nielsen. Likelihood inference for a fractionally cointegrated vector autoregressive model. Econometrica, 80:2667-2732, 2012.
[82] S. Johansen and M. 0 Nielsen. A necessary moment condition for the fractional functional central limit theorem. Econometric Theory, 28:671-679, 2012.
[83] S. Johansen and M. 0. Nielsen. The role of initial values in conditional sum-of-squares estimation of nonstationary fractional time series models. Econometric Theory, 32:1095-1139, 2016.
[84] N. M. Kellard, C. Dunis, and N. Sarantis. Foreign exchange, fractional cointegration and the implied-realized volatility relation. Journal of Banking and Finance, 34:882¬891, 2010.
[85] H. Kew and D. Harris. Heteroskedasticity-robust testing for a fractional unit root. Econometric Theory, 25:1734-1753, 2009.
[86] C. M. Kuan and C. C. Hsu. Change-point estimation of fractionally integrated processes. Journal ofTime Series Analysis, 19:693-708, 1998.
[87] A. J. Lawrence and N. T. Kottegoda. Stochastic modelling of river-flow time series. Journal ofthe Royal Statistical Society: Series A, 140:1-47, 1977.
[88] B. LeBaron. Stochastic volatility as a simple generator of financial power laws and long memory. Quantitative Finance, 1:621-631, 2001.
[89] W. K. Li and A. I. McLeod. Fractional time series modeling. Biometrika, 73:217-221,
1986.
REFERENCES 101
[90] O. Lieberman and P. C. B. Phillips. Expansions for the distribution of the maximum likelihood estimator of the fractional difference parameter. Econometric Theory, 20:
464-484, 2004.
[91] M. Linden. Time series properties of aggregated ar(1) processes with uniformly distributed coefficients. Economic Letters, 64:31-36, 1999.
[92] S. Ling and W. K. Li. On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity. Journal of American Statistical
Association, 92:1184-1194, 1997.
[93] I. N. Lobato. Consistency of the averaged cross-periodogram in long-memory series. Journal ofTime Series Analysis, 18:137-155, 1997.
[94] I. N. Lobato and C. Velasco. Efficient wald tests for fractional unit roots. Econo-
metrica, 75:575-589, 2007.
[95] B. B. Mandelbrot. Long-run linearity, locally gaussian process, h-spectra and infinite variances. International Economic Review, 10:82-111, 1969.
[96] B. B. Mandelbrot and J. W. Van Ness. Fractional brownian motions, fractional noises and applications. SIAM Review, 10:422-437, 1968.
[97] M. 0. Nielsen. Local whittle analysis of stationary fractional cointegration and the implied-realized volatility relation. Journal ofBusiness and Economic Statistics, 25:
427-446, 2007.
[98] L. C. Nunes, C. M. Kuan, and P. Newbold. Spurious break. Econometric Theory, 11:736-749, 1995.
[99] P. Perron and Z. Qu. Long-memory and level shifts in the volatility of stock market return indices. Journal ofBusiness and Economic Statistics, 28:275-290, 2010.
[100] Pierre Perron. Dealing with structural breaks. In Palgrave Handbook ofEconomet-
rics, pages 278-352, 2006.
[101] M. H. Pesaran and A. Chudik. Aggregation in large dynamic panels. Journal of
Econometrics, 178:273-285, 2014.
[102] M. H. Pesaran and A. Timmerman. Small sample properties of forecasts from au-toregressive models under structural breaks. Journal ofEconometrics, 129:183-217,
2005.
[103] M. H. Pesaran and A. Timmerman. Selection of estimation window in the presence of breaks. Journal ofEconometrics, 137:134-161, 2007.
[104] S. Pong, S. J. Shackleton, S. J. Taylor, and X. Xu. Forecasting currency volatility: A comparison of implied volatilities and ar(fi)ma models. Journal of Banking and
Finance, 28:2541-2563, 2004.
REFERENCES 102
[105] D. S. Poskitt. Properties of the sieve bootstrap for fractionally integrated and non-invertible processes. Journal ofTime Series Analysis, 29:224-250, 2008.
[106] D. S. Poskitt, Simone D. Grose, and Gael M. Martin. Higher-order improvements of the sieve bootstrap for fractionally integrated processes. Journal ofEconometrics,
188:94-110, 2015.
[107] P. M. Robinson. Statistical inference for a random coefficient autoregressive model. Scandinavian Journal ofStatistics, 5:163-168, 1978.
[108] P. M. Robinson. Testing for strong serial correlation and dynamic conditional het-eroskedasticity in multiple regression. Journal ofEconometrics, 47:67-84, 1991.
[109] P. M. Robinson. Time Series with Strong Dependence, Advances in Econometrics: 6th World Congress. Cambridge University Press, Cambridge, 1994.
[110] P. M. Robinson. Efficient tests of nonstationary hypotheses. Journal of American
Statistical Association, 89:1420-1437, 1994.
[111] P. M. Robinson. Semiparametric analysis of long-memory time series. Annals of
Statistics, 22:515-539, 1994.
[112] P. M. Robinson. Gaussian semiparametric estimation of long range dependence.
Annals ofStatistics, 23:1630-1661, 1995.
[113] P. M. Robinson and D. Marinucci. Narrow-band analysis of nonstationary processes.
Annals ofStatistics, 29:947-986, 2001.
[114] P. M. Robinson and D. Marinucci. Semiparametric frequency domain analysis of fractional cointegration. In P. M. Robinson, editor, Time Series with Long Memory, pages 334-373. Oxford University Press, 2003.
[115] X. Shao. Nonstationarity-extended whittle estimation. Econometric Theory, 26:
1060-1087, 2010.
[116] Yanlin Shi and Kin-Yip Ho. Long memory and regime switching: A simulation study on the markov regime switching arfima model. Journal of Banking and Finance, 61:
5189-5204, 2015.
[117] K. Shimotsu and P. C. B. Phillips. Exact local whittle estimation of fractional integration. Annals ofStatistics, 33:1890-1933, 2005.
[118] K. Shimotsu and P. C. B. Phillips. Local whittle estimation of fractional integration and some of its variants. Journal ofEconometrics, 130:209-233, 2006.
[119] F. Sowell. Maximum likelihood estimation of stationary univariate fractionally in¬tegrated time series models. Journal ofEconometrics, 53:165-188, 1992.
REFERENCES 103
[120] F. B. Sowell. The fractional unit root distribution. Econometrica, 58:495-505, 1990.
[121] J. H. Stock and M. W. Watson. Evidence on structural instability in macroeconomic time series relations. Journal ofBusiness and Economic Statistics, 14:11-30, 1996.
[122] K. Tanaka. The nonstationary fractional unit root. Econometric Theory, 15:549-582,
1999.
[123] S. J. Taylor. Asset Price Dynamics, Volatility, and Prediction. Princeton University Press, Princeton, N.J., 2005.
[124] M. A. Tieslau, P. Schmidt, and R. T. Baillie. A minimum-distance estimator for long memory processes. Journal ofEconometrics, 71:249-264, 1996.
[125] S. H. Wang and C. Vasilakis. Recursive predictive tests for structural change of long memory arfima processes with unknown break-points. Economics Letters, 118:
389-392, 2012.
[126] J. Westerlund and P. Narayan. Testing the efficient market hypothesis in condi¬tionally heteroskedastic futures markets. Journal ofFutures Markets, 33:1024-1045,
2013.
[127] P. Whittle. Hypothesis Testing in Time Series Analysis. PhD Dissertation, Univer¬sity of Uppsala, 1951.
[128] P. Zaffaroni. Contemporaneous aggregation of linear dynamic models in large economies. journal ofEconometrics, 120:75-102, 2004

Thank you for copying data from http://www.arastirmax.com