[1] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001) 2683-2693.
[2] V.V. Chistyakov, Modular metric spaces I: Basic concepts, Nonlinear Anal. 72(2010),
1-14.
REFERENCES 253
[3] C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, J. Appl. Math. 2012, Art. ID 907951, 5 pp.
[4] W. Sintunavarat, P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math. 2011, Art. ID 637958,
14 pp.
[5] H. Aydi, H.K. Nashine, B. Samet, H. Yazidi, Coincidence and common fixed point results in partially ordered cone metric spaces and applications to integral equations.
Nonlinear Anal. 74, 6814-6825 (2011).
[6] W. Shatanawi, Z. Mustafa, N. Tahat, Some coincidence point theorems for nonlinear, contraction in ordered metric spaces. Fixed Point Theory and Applications 2011, 68
(2011).
[7] M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict
contractive conditions, J. Math. Anal. Appl. 270(2002), 181-188.
[8] B. Azadifar, G. Sadeghi, R. Saadati, C. Park, Integral type contractions in modular metric spaces, J. Inequal. Appl. 2013, 2013:483.
[9] V. V. Chistyakov, A fixed point theorem for contractions in modular metric spaces, Perprint submited to arxiv (2011).
[10] P. Kumam, Fixed point theorems for nonexpansive mapping in modular spaces, Arch.
Math. 40(2004), 345-353.
[11] A. Razani, E. Nabizadeh, M. Beyg Mohamadi, S. Homaeipour, Fixed point of non¬linear and asymptotic contractions in the modular space, Proc. Amer. Math. Soc.
22(2009), 1877-1881.
[12] J. Mosielak, W. Orlicz, On modular spaces, Studia Math. 18(1959), 49-65.
[13] Ph. Turpin, Fubini inequalities and bounded multiplier property in generalized mod¬ular spaces, Comment. Math. Tomus specialis in honorem Ladislai Orlicz I, 331-353
(1978).
[14] D. Jain, A. Padcharoen, P. Kumam, D. Gopal, A new approach to study fixed point of multivalued mappings in modular metric spaces and applications, Mathematics
2016, 4(3), 51.
[15] M. Beygmohammadi, A. Razani, Two fixed point theorems for mappings satisfying a general contractive condition of integral type in the modular spaces, Internat. J.Math.
Sci. 2010, Art. ID 317107, 10 pp.
[16] T. Dominguez-Benavides, M.A. Khamsi, S. Samadi, Uniformly Lipschitzian mappings in modular function spaces, Nonlinear Anal. 46(2001), 267-278.
REFERENCES 254
[17] Y.J.Cho, R. Saadati, G. Sadeghi, Quasi contraction mappings in modular metric spaces. Journal of Applied Mathematics Volume 2012, Article ID 907951, 5 pages
Thank you for copying data from http://www.arastirmax.com