You are here

Global existence of solutions for a system modelling electromigration of ions through biological cell membranes with L1 data

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this work is to show the existence of weak solutions and supersolutions for a nonlinear system modelling Ions migration through biological cells membranes with L1- Data. In the first step, we describe the mathematical model after that we define an approximating scheme. Under simplifying assumptions on the model equation, we prove some L1 a priori estimates, then we prove that the solution of the truncated system converges to the solution of our main problem.
272
294

REFERENCES

References: 

[1] N. Alaa and F. Aqel. Periodic solution for some parabolic degenerate equation with critical growth with respect to the gradient. Annals of the University of Craiova Mathematics and Computer Science Series, 42:13-26, 2015.
[2] N. Alaa, N. Idrissi Fatmi, and J. R. Roche. Mathematical analysis for a model of nickel-iron alloy electrodeposition on rotating disk electrode parabolic case. Interna¬tional journal ofmathematics and statistic, pages 421-439, Spring 2008.
[3] N. Alaa and A. Lefraich. Computational simulation of a new system modelling ions electromigration through biological membranes. Theoretical Biology and Medical Mod¬elling, pages 10-51, 2013.
[4] N. Alaa, A. Lefraich, and I. EL malki. A second-generation computational modeling of cardiac electrophysiology: response of action potential to ionic concentration changes and metabolic inhibition. Theoretical Biology and Medical Modelling, pages 11-46,
2014.
[5] R. E. Baker. Mathematical Biology and Ecology Lecture Notes. 2011.
[6] H. Cohen and J.W. Cooley. The numerical solution of the time dependent nernst-planck equations. Biophys J., 5(2):145-162, 1965.
[7] R. Dautray and J. L. Lions. Analyse matheatique et calcul numerique pour les sciences et les techniques. Annals ofPhysics, 8, 1988.
REFERENCES 294
[8] J.Henry and B.Louro. Asymptotic analysis of reaction diffusion electromigration system. Institut Nationale de Recherche en Informatique et Automatique, 2048:111¬149, 1993.
[9] G. Karp. Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons, Oct 19, 2009.
[10] N. Lakshminarayanaih. Transport phenomena in membranes. Academic press, New
York, 1969.
[11] N. Lakshminarayanaih. Equations of Membrane Biophysics. Academic press, INC,
1984.
[12] M.C.Mackey. Ion transport through biological membranes. Lecture Notes in biomath-ematics, 7, Springer Verlag, Berli, 1975.
[13] A. Mouida, N.Alaa, W. Bouarifi, and S. Mesbahi. Existence result for quasilinear elliptic degenerate systems with non linearity in the gradient and l1 data. Electronic Journal of Differential Equations, 2013(142):1-13, 2013.
[14] N.Alaa, W. Bouarifi, and D. Bensikaddour. Image restoration using a reaction-diffusion process restoration. Electronic Journal of Differential Equations,
2014(197):1-12, 2014.
[15] N.Alaa and H.Lefraich. Mathematical analysis of a system modeling ions electro migration through biological membranes. Applied Mathematical Sciences, 6:2091¬2110, 2012.
[16] M. Pierre. Weak solutions and supersolutions in l1 for reaction-diffusion systems. J. Evolution Equations, 3:153-168, 2003.
[17] M. Pierre and P. Baras. Problemes paraboliques semi-lineres avec donnees initiales mesures. Applicable Analysis, 18:111-149, 1984.
[18] M. Schmuck and M. Z. Bazant. Homogeneization of the poisson nernst planck equa¬tions for ion transport in charged porous media. Siam J. Appl. Math, 75(3):1369-1401,
2015.
[19] C. Walsh, T. Cromartie, P. Marcotte, and R. Spencer. Methods enzymol. Annals of Physics. 53, (437), 1978.

Thank you for copying data from http://www.arastirmax.com