You are here

n-tupled common fixed point theorems via a-series in ordered metric spaces

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
The aim of this paper is to establish some results about the existence and uniqueness of n-tupled fixed point that extend the previous results, using the concept of an a-series for sequence of mappings having mixed monotone property in the framework of ordered complete metric spaces. The main result is supported with the aid of an illustrative example
295
311

REFERENCES

References: 

[1] H. Aydi, Erdal Karapinarb and Calogero Vetroc, Meir-Keeler type contractions for tripled fixed points, Acta Mathematica Scientia, 32(6) (2012), 2119-2130.
REFERENCES 310
[2] H. Aydi, Erdal Karapinar and Stojan Radenovic, Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions, RACSAM - Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas September, 107(2) (2013), 339-353.
[3] H. Aydi, Erdal Karapinar and Wasfi Shatanawi, Tripled common fixed point results for generalized contractions in ordered generalized metric spaces, Fixed Point Theory
Appl.,(2012), 2012:101
[4] H. Aydi, Erdal Karapinar and Wasfi Shatanawi, Tripled fixed point Results in generalized metric spaces, J. Appl. Math., 2012 (2012) Article Id: 314279.
[5] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 74(2010), 7347-7355.
[6] V. berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74(15) (2011), 4889-4897.
[7] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric space and applications, Nonlinear Anal., 65 (2006), 1379-1393.
[8] M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation, 218(14) (2012), 7339¬7346.
[9] M. Borcut and V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation, 218(10)
(2012), 5929-5936.
[10] L. Ciric, M. Abbas, B. Damjanovic and R. Saadati, Common fuzzy fixed point the¬orems in ordered metric spaces, Math. Comput. Modelling, 53 (2011), 1737-1741.
[11] L. Ciric and V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stoch. Anal., 27(6) (2009), 1246-1259.
[12] S. S. Chang and Y.H. Ma, Coupled fixed point for mixed monotone condensing op¬erators and an existence theorem of the solutions for a class of functional equations arising in dynamic programming, J. Math. Anal. Appl., 160 (1991), 468-479.
[13] B. S. Choudhary and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73 (2010), 2524¬2531.
[14] M. E. Gordji and M. Ramezani, N-fixed point theorems in partially ordered metric
spaces, Nonlinear Anal., 74(13) (2011), 4544-4549.
REFERENCES 311
[15] M. Imdad, A. H. Soliman, B.S. Choudhury and P. Das, On n-tupled coincidence and common fixed points results in metric spaces. Journal of Operator, 2013, Article ID:
532867 (2013).
[16] E. Karapinar, H. Aydi, Z. Mustafa, Some tripled coincidence point theorems for almos generalized contractions in ordered metric spaces. Tamkang J. Math., 44(3) (2013),
233-251.
[17] Amit Kumar, Fixed point theorems for set valued mappings in partially ordered G-metric space, Tbilisi Mathematical Journal, 7(1) (2014), 45-54.
[18] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear con¬tractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341-4349.
[19] Maurice Frechet, Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat.
Palermo, 22 (1906), 1-74.
[20] B. Samet and C. Vetro, Coupled fixed point, /-invariant set and fixed point of N-
order. Ann. Funct. Anal. 1(2) (2010), 4656-4662.
[21] M. . Searccid, Metric Spaces, Springer-Verlag London Limited 2007.
[22] V. Sihag, C. Vetro and R. K. Vats, A fixed point theorem in G-metric spaces via a-series, Quaestiones Mathematicae, 37 (2014), 1-6.
[23] R. K. Vats, Kenan Tas, Vizender Sihag and Amit Kumar, Tripled fixed point theorems via a-series in partially ordered metric spaces, Journal of Inequalities and Applications,
2014:176.

Thank you for copying data from http://www.arastirmax.com