[1] H. Aydi, Erdal Karapinarb and Calogero Vetroc, Meir-Keeler type contractions for tripled fixed points, Acta Mathematica Scientia, 32(6) (2012), 2119-2130.
REFERENCES 310
[2] H. Aydi, Erdal Karapinar and Stojan Radenovic, Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions, RACSAM - Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas September, 107(2) (2013), 339-353.
[3] H. Aydi, Erdal Karapinar and Wasfi Shatanawi, Tripled common fixed point results for generalized contractions in ordered generalized metric spaces, Fixed Point Theory
Appl.,(2012), 2012:101
[4] H. Aydi, Erdal Karapinar and Wasfi Shatanawi, Tripled fixed point Results in generalized metric spaces, J. Appl. Math., 2012 (2012) Article Id: 314279.
[5] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 74(2010), 7347-7355.
[6] V. berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74(15) (2011), 4889-4897.
[7] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric space and applications, Nonlinear Anal., 65 (2006), 1379-1393.
[8] M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation, 218(14) (2012), 7339¬7346.
[9] M. Borcut and V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation, 218(10)
(2012), 5929-5936.
[10] L. Ciric, M. Abbas, B. Damjanovic and R. Saadati, Common fuzzy fixed point the¬orems in ordered metric spaces, Math. Comput. Modelling, 53 (2011), 1737-1741.
[11] L. Ciric and V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stoch. Anal., 27(6) (2009), 1246-1259.
[12] S. S. Chang and Y.H. Ma, Coupled fixed point for mixed monotone condensing op¬erators and an existence theorem of the solutions for a class of functional equations arising in dynamic programming, J. Math. Anal. Appl., 160 (1991), 468-479.
[13] B. S. Choudhary and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73 (2010), 2524¬2531.
[14] M. E. Gordji and M. Ramezani, N-fixed point theorems in partially ordered metric
spaces, Nonlinear Anal., 74(13) (2011), 4544-4549.
REFERENCES 311
[15] M. Imdad, A. H. Soliman, B.S. Choudhury and P. Das, On n-tupled coincidence and common fixed points results in metric spaces. Journal of Operator, 2013, Article ID:
532867 (2013).
[16] E. Karapinar, H. Aydi, Z. Mustafa, Some tripled coincidence point theorems for almos generalized contractions in ordered metric spaces. Tamkang J. Math., 44(3) (2013),
233-251.
[17] Amit Kumar, Fixed point theorems for set valued mappings in partially ordered G-metric space, Tbilisi Mathematical Journal, 7(1) (2014), 45-54.
[18] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear con¬tractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341-4349.
[19] Maurice Frechet, Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat.
Palermo, 22 (1906), 1-74.
[20] B. Samet and C. Vetro, Coupled fixed point, /-invariant set and fixed point of N-
order. Ann. Funct. Anal. 1(2) (2010), 4656-4662.
[21] M. . Searccid, Metric Spaces, Springer-Verlag London Limited 2007.
[22] V. Sihag, C. Vetro and R. K. Vats, A fixed point theorem in G-metric spaces via a-series, Quaestiones Mathematicae, 37 (2014), 1-6.
[23] R. K. Vats, Kenan Tas, Vizender Sihag and Amit Kumar, Tripled fixed point theorems via a-series in partially ordered metric spaces, Journal of Inequalities and Applications,
2014:176.
Thank you for copying data from http://www.arastirmax.com