You are here

Intuitionistic Fuzzy Zweier I-convergent Double Sequence Spaces Defined by Orlicz Function

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of this paper is to introduce the intuitionistic fuzzy Zweier /-convergent double sequence spaces 2Z(fJ/ V)(M) and V)(M) defined by Orlicz function and study the fuzzy topology on the said spaces.
574
585

REFERENCES

References: 

[1] B. Altay, F. Basar, and Mursaleen, On the Euler sequence space which include the spaces £p and 4c, Inform. Sci., 76(10), (2006) pp. 1450-1462.
[2] F. Basar, and B. Altay, On the spaces of sequences of p-bounded variation and related matrix mappings, Ukrainion math. J. 55(2003).
[3] L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model, 128(2000)27-33.
REFERENCES 584
[4] H. Fast, Sur la convergence statistique, Colloq. Math.,2(1951), 241-244.
[5] A. L. Fradkov, R. J. Evans, Control of chaos: Methods of applications in engineering, Chaos, solution and Fractals (29)(2005),33-56.
[6] R. Giles, A computer program for fuzzy reasoning, Fuzzy sets and systems
(4)(1980),221-234.
[7] L. Hong, J. Q. Sun, Bifurcations of fuzzy non-linear dynamical systems, Commun.
Nonlinear Sci.Numer. Simul, (1)(2006), 1-12.
[8] V. A. Khan, K. Ebadullah and Yasmeen, On Zweier /-convergent sequence spaces, Proyecciones Journal of Mathematics Vol.(3)(33)(2014),259-276.
[9] V. A. Khan, K. Ebadullah and R.K.A. Rababah, Intuitionistic fuzzy zweier /-convergent sequence spaces, Functinal Analysis: Theory, methods and applications,
Vol. (1)(2015), 1-7.
[10] V. A. Khan, Yasmeen, On Paranorm Type Intuitionistic Fuzzy Zweier I-convergent Sequence Spaces, New Trends in Mathematical Sciences(Submitted).
[11] V. A. Khan, Yasmeen, Intuitionistic Fuzzy Zweier I-convergent Double Sequence Spaces, New Trends in Mathematical Sciences(In press).
[12] V. A. Khan, Yasmeen, Intuitionistic Fuzzy Zweier I-convergent Sequence Spaces de¬fined by Modulus function, (submitted).
[13] V. A. Khan, Yasmeen, Intuitionistic Fuzzy Zweier I-convergent Sequence Spaces de¬fined by Orlicz function, (submitted).
[14] P. Kostyrko, T. Salat and W. Wilczynski, /-convergence, Real Analysis Exchange
(26)(2000), No. 2, 669-686.
[15] P. Das, P. Kostyrko, W. Wilczynski, P. Malik, / and /*- convergence of double se¬quences, Math. Slovaca (58)(2008), 605-620.
[16] I.J. Maddox, Spaces of strongly summable sequences, Qurt. Math, vol. (18)(1967),
345-355.
[17] I.J. Maddox, Elements of functional analysis, Cambridge univ. Press (1970).
[18] A. Wilansky, Summability through functional analysis, North Holland Mathematics
Studies, Oxford (1984).
[19] E. Malkowsky, Recent results in the theory of matrix transformation in sequence
spaces, Math. Vesnik,(49)(1997),187-196.
[20] M. Mursaleen, Osama H. H. Edely, statistical convergence of double sequences, J.
Math. Anal. Appl. (288)(2003), 223-231.
REFERENCES
585
[21] M. Mursaleen, Q.M.D. Lohni, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos, solution and Fractals (42)(2009), 331-344.
[22] A. Nabiev, S. Pehlivan, M. Gürdal, On /- Cauchy sequence, Taiwanese J. Math.
(11)(2)(2007), 569-576.
[23] P. N. Ng and P.Y. Lee, Ceaaro sequence spaces of non-absolute type, Comment.
Math.Pracc. Math.(20)(2)(1978), 429-433.
[24] J. H. Park, Intuitionistic fuzzy matric space, Chaos, solution and Fractals (22)(2004),
1039-1046.
[25] R. Saddati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, solution
and Fractals (27)(2006), 331-344.
[26] E. Savas, M. Mursaleen, On statistical convergent double sequences of fuzzy numbers,
Inform. Sci. 162(2004), 183-192.
[27] M. Sengönül, On the Zweier sequence space, Demonstratio Mathematica, Vol. XL No. (40)(2007), 181-'196.1.
[28] C. S. Wang, On Norlund sequence spaces, Tamkang J. Math. (9)(1978), 269-274.1.
[29] L. A. Zadeh, Fuzzy sets, Inform Control, (8)(1965), 338-353. 1, 1.8

Thank you for copying data from http://www.arastirmax.com