You are here

On intra-regular ordered T-semigroups

Journal Name:

Publication Year:

Author NameUniversity of Author

AMS Codes:

Abstract (2. Language): 
We use the defnition of intra-regularity (left regularity) of po-f-semigroups introduced in 2016 in Armenian Journal of Mathematics. Being able to describe the form of the elements of the principal flter by using this defnition, we study the decomposition of an intra-regular po- f-semigroup into simple components. Then we prove that a po-f-semigroup M is intra-regular and the ideals of M form a chain if and only if M is a chain of simple semigroups. Moreover, a po-f-semigroup M is intra-regular and the ideals of M form a chain if and only if the ideals of M are prime. Finally, for an intra-regular po-f-semigroup M, the set f(x)N j x 2 Mg coincides with the set of all maximal simple subsemigroups of M. A decomposition of some left regular po-f-semigroups into their left simple components is also given.
620
630

REFERENCES

References: 

[1] W.E. Barnes. On the T-rings of Nobusawa. Pacifc J. Math. 18:411{422, 1966.
[2] N. Kehayopulu. Note on Green's relations in ordered semigroups. Math. Japon.
36(2):211{214, 1991.
[3] N. Kehayopulu. On prime, weakly prime ideals in ordered semigroups. Semigroup
Forum 44(3):341{346, 1992.
[4] N. Kehayopulu. On intra-regular ordered semigroups. Semigroup Forum 46(3):271{
278, 1993.
[5] N. Kehayopulu. On prime, weakly prime ideals in po-T-semigroups. Lobachevskii J.
Math. 30(4):257{262, 2009.
[6] N. Kehayopulu. On ordered T-semigroups. Sci. Math. Jpn. 71(2):179{185, 2010.
[7] N. Kehayopulu. Green's relations and the relation N in T-semigroups. Quasigroups
Related Systems 22(1):89{96, 2014.
[8] N. Kehayopulu, M. Tsingelis. On intra-regular and some left regular T-semigroups.
Quasigroups Related Systems 23(2):263{270, 2015.
[9] N. Kehayopulu, M. Tsingelis. Principal flters of some ordered T-semigroups. Armen.
J. Math. 8(2):96{103, 2016.
[10] Jiang Luh. On the theory of simple T-rings. Michigan Math. J. 16:65{75, 1969.
[11] N. Nobusawa. On a generalization of the ring theory. Osaka J. Math. 1:81{89, 1964.
[12] N.K. Saha. The maximum idempotent-separating congruence on an inverse T
semigroup. Kyungpook Math. J. 34(1):59{66, 1994.
[13] M.K. Sen. On T-semigroup. In: Algebra and its applications, Int. Symp. New Delhi,
1981. Lecture Notes in Pure and Appl. Math. 91, Dekker, New York, 1984, pp. 301{
308.
[14] M.K. Sen, N.K. Saha. On T-semigroup I. Bull. Calcutta Math. Soc. 78(3):180{186,
1986.
REFERENCES 630
[15] M.K. Sen, N.K. Saha. The maximum idempotent-separating congruence on an ortho-
dox T-semigroup. J. Pure Math. 7:39{47, 1990.
[16] M.K. Sen, N.K. Saha. Orthodox T-semigroups. Internat. J. Math. Math. Sci.
13(3):527{534, 1990.
[17] M.K. Sen, A. Seth. Radical of T-semigroup. Bull. Calcutta Math. Soc. 80(3):189{196,
1988.
[18] M.K. Sen, A. Seth. On po-T-semigroups. Bull. Calcutta Math. Soc. 85(5):445{450,
1993.

Thank you for copying data from http://www.arastirmax.com