You are here

Coecient estimates for the generalized subclass of analytic and bi-univalent functions

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
In this paper, we introduce and investigate an interesting subclass Bh;p (A) of analytic and bi-univalent functions in the open unit disk U. For functions belonging to the class Bh;p (A), obtain estimates on the Frst two coefcients ja2j and ja3j. The results presented in this paper generalize and improve some recent works of Frasin et al. [B.A.Frasin, M.K.Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24:1569-1573, 2011] and Srivastava et al. [Qing-Hua Xu, Ying-Chun Gui, H.M.Srivastava, coefcient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25: 990-994, 2012].
638
644

REFERENCES

References: 

[1] M.Lewin, On a coecient problem for bi-univalent functions. Proc. Amer. Math. Soc.
18: 63-68, 1967.
[2] D.A. Brannan, J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Pro-
ceedings of the NATO Advanced Study Institute held at the University of Durham,
Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
REFERENCES 644
[3] E. Netanyahu, The minimal distance of the image boundary from the origin and the
second coecient of a univalent function in jzj < 1. Arch. Rational Mech. Anal. 32 :
100-112, 1969.
[4] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar,
A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait;
February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier
Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babes-Bolyai Math.
31 (2): 70-77, 1986.
[5] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London,
1981.
[6] H.M. Srivastava, A.K. Mishra, P.Gochhayat, Certain subclasses of analytic and bi-
univalent functions. Appl. Math. Lett. 23: 1188-1192, 2010.
[7] Qing-Hua Xu, Ying-Chun Gui, H.M.Srivastava, Coecient estimates for a certain
subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25(6): 990-994,
2012.
[8] B.A.Frasin, M.K.Aouf, New subclasses of bi-univalent functions. Appl. Math. Lett.
24: 1569-1573, 2011.

Thank you for copying data from http://www.arastirmax.com