You are here

An unified theorem for mappings in orbitally complete partial metric spaces

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
In this paper an unified theorem for mappings in orbitally complete partial metric spaces is proved. This theorem generalizes and proves Theorems 8 and 9 [8], Theorem 3.2 [10] and Theorem 2.6 [7].
908
915

REFERENCES

References: 

[1] T. Abdeljawad, E. Karapinar, and K. Tas. Existence and uniqueness of a common fixed point on a partial metric space. Appl. Math. Lett., 24(11):1900-1904, 2011.
[2] J. Achari. On Ciric non - unique partial metric spaces. Mat. Vesnik, 13:255-257,
1976.
[3] I. Altun, F. Sola, and H. Simsek. Generalized contractions in partial metric spaces.
Topology Appl., 157(18):2778-2785, 2010.
[4] Lj. Ciric. On some maps with a nonunique fixed point. Publ. Inst. Math., Nouv. Sr.,
17(31):52-58, 1974.
REFERENCES 915 [5] Lj. (Ciric and N. JotiC A further extension of maps with non-unique fixed points.
Mat. Vesn., 50(1-2):1-4, 1998.
[6] Z. Kadelburg, H. K. Nashine, and S. RadenoviC Fixed point results under various contractive conditions in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fıs. Nat., Ser. A Mat., RACSAM, 107(2):241-256, 2013.
[7] E. Karapinar. Ciric types nonunique fixed point theorems on partial metric spaces. J. Nonlinear Sci. Appl., 5(2):74-83, 2012.
[8] E. Karapınar and I. M. Erhan. Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett., 24(11):1894-1899, 2011.
[9] S. G. Matthews. Partial metric topology. In Proc. 8th Summer Conference on General Topology and Applications, volume 728 of Ann. New York Acad. Sci., pages 183-197,
1994.
[10] H. K. Nashine and E. Karapinar. Fixed point results in orbitally complete partial metric spaces. Bull. Malays. Math. Sci. Soc. (2), 36(4):1185-1193, 2013.
[11] H. K. Pathak. Some nonunique fixed point theorems for new class of mappings.
Ranchi Univ. Math. J., 17:65-70, 1986.
[12] H. K. Pathak. On some nonunique fixed point theorems for the maps of Dhage type. Pure Appl. Math. Sci., 27(1-2):41-47, 1988.
[13] V. Popa. Fixed point theorems for implicit contractive mappings. Stud. Cercet. tiin., Ser. Mat., Univ. Bacu, 7:129-133, 1997.
[14] V. Popa. Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstr. Math., 32(1):157-163, 1999.
[15] V. Popa. Well - posedness of the fixed point problem in orbitally complete metric spaces. Stud. Cercet. Ştiint., Ser. Mat., Univ. Bacâu, 16:209-214, 2006.
[16] V. Popa and C. Berceanu. A general fixed point theorem for pairs of orbitally con¬tinuous mappings. An. Univ. Galai, Metal., Fasc. II, 21:57-65, 2003.
[17] D. Türkoğlu, O. Ozer, and B. Fisher. Fixed point theorems for T-orbitally complete spaces. Stud. Cercet. Ştiint., Ser. Mat., Univ. Bacau, 9:211-218, 1999.
[18] C. Vetro and F. Vetro. Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl., 6(3):152-161, 2013

Thank you for copying data from http://www.arastirmax.com