[1 ] D. M. Burton, Elementary Number Theory, 6th ed., McGraw-Hill, New York, 2005.
[2 ] R. D. Carmichael, On the numerical factors of the arithmetic forms n ±n, Ann. Math. 2nd Ser.
15: 30–70 (1913).
[3 ] D. H. Lehmer, An extended theory of Lucas’ functions, Ann. Math. 31: 419–448 (1930).
[4 ] D. H. Lemer, On Lucas’ test for the primality of Mersenne’s numbers, J. Lon. Math. Soc. 10:
162–165 (1935).
[5 ] É. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1: 184–240,
289–321 (1878).
[6 ] É. Lucas, Question 453, Nouv. Cor. Math. 5: p.137 (1879).
John H. Jaroma / Eur. J. Pure Appl. Math, 2 (2009), (352-360) 360
[7 ] T. Pepin, Sur la formule 22n
+1, Comp. Rend. Acad. Sci. 85: 329–331 (1877).
[8 ] F. Proth, Énoncés de divers théorèmes sur les nombres, Comp. Rend. Acad. Sci. 83: 1288–1289
(1876).
[9 ] F. Proth, Mémoires présentés, Comp. Rend. Acad. Sci. 87: p.374 (1878).
[10 ] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1996.
[11 ] N. Robbins, Beginning Number Theory, Wm. C. Brown, Dubuque, 1993.
[12 ] K. H. Rosen, Elementary Number Theory, 4th ed., Addison Wesley Longman, Reading, 2000.
[13 ] M. Rosen, A proof of the Lucas-Lehmer test, Amer. Math. Mon. 95: 855–856 (1988).
[14 ] P. Schumer, Introduction to Number Theory, PWS, Boston, 1996.
[15 ] J. J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd ed., Cambridge Univ. Press,
Cambridge, 2005.
[16 ] H. C. Williams, Édouard Lucas and Primality Testing, John Wiley & Sons, New York, 1998
Thank you for copying data from http://www.arastirmax.com