You are here

On Beta*g–closed Sets and New Separation Axioms

Journal Name:

Publication Year:

Author NameUniversity of Author

AMS Codes:

Abstract (2. Language): 
In this paper, by using ∗−set [24] we introduce a new class of sets called ∗ g−closed sets, which is stronger than g−closed sets and weaker than closed sets. We define two new separation axioms called ∗T1/2 and ∗∗T1/2 spaces as applications of ∗ g−closed sets. The notions ∗ g−continuity and ∗ g−irresoluteness are also introduced.
20-33

REFERENCES

References: 

[1] S.P. Arya, T. Nour. Characterizations of s-normal spaces. Indian J. Pure Appl. Math., 21,
717-719, 1990.
[2] G. Aslım, C. Guler and T. Noiri. On gs−closed sets in topological spaces. Acta Math.
Hungar., 112, 4, 275-283, 2006.
[3] N. Bourbaki. General Topology. Part I. Addison-Wesley. Reading Mass., 1966.
[4] M. Caldas, S. Jafari and T. Noiri and M. Simoes. A new generalization of contracontinuity
via Levine’s g−closed sets. Chaos Solitions Fractals, in press, doi:
10.1016/j.chaos.2005.12.032.
[5] S.G. Crossley and S. K. Hildebrand. Semi topological properties. Fund Math., 74, 233-
254, 1972.
[6] R. Devi, H. Maki and K.Balachandran. Semi-generalized closed maps and generalized
semi-closed maps. Mem. Fac. Sci. Kochi Univ. Ser. A Math., 14, 41-54, 1993.
[7] J. Dontchev and M. Ganster. On -generalized closed sets and T3/4-spaces. Mem. Fac.
Sci. Kochi Univ. Ser. A Math., 17, 15-31, 1996.
[8] J. Dontchev and T. Noiri. Quasi-normal spaces and g−closed sets. Acta Math Hungar.,
89, 211-219, 2000.
[9] E. Ekici. On almost gp-continuous functions, Chaos Solitions Fractals,
doi:10.1016/j.Chaos.2005.12.056., 2006.
[10] E. Ekici. On contra g−continuous functions. Chaos Solitions Fractals, doi
:10.1016/j.chaos.2006.05.016., 2006
[11] E. Ekici and C.W. Baker. On g−closed sets and continuity. Kochi J. Math., in press.
[12] E.D. Khalimsky. Applications of connected ordered topological spaces in topology. In:
Conference of Math Department of Povolsia, 1970.
[13] E.D. Khalimsky, R. Kopperman and P.R. Meyer. Computer graphics and connected ordered
topological topologies on finite ordered sets. Topol. Apply., 36, 1-17, 1990.
[14] T.Y. Kong, R. Kopperman and P.R. Meyer. A topological approach to digital topology. Am.
Math. Monthly, 98, 901-917, 1991.
[15] V. Kovalevsky and R. Kopperman. Some topology-based image processing algorithims.
Ann NY Acad. Sci., 728, 174-182, 1994.
[16] M. K. R. S. V. Kumar. Between closed sets and g−closed sets. Mem. Fac. Sci. Kochi Univ.
Ser A Math.,. 21, 1-19, 2000.
[17] N. Levine. Generalized closed sets in topology. Rend. Circ. Mat. Palermo, 19, 89-96,
1970.
[18] H. Maki, J. Umehara and T. Noiri. Every topological space is pre-T1/2. Mem. Fac. Sci.
Kochi Univ. Ser. A (Math)., 17, 33-42, 1996.
[19] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deep. On precontinuous and weak precontinuous
mappings. Proc. Math. Phys. Soc. Egypt, 53, 47-53, 1982.
[20] T. Noiri. On s-normal spaces and pre gs−closed functions. Acta Math. Hungar., 80, 105-
113, 1998.
[21] J.H. Park. On pgp−closed sets in topological spaces. Indian J. Pure Apply Math., (to
appear)
[22] J.H. Park and J.K. Park. On pgp-continuous functions in topological spaces. Chaos Solitions
Fractals, 20, 467–77, 2004.
[23] W. Witten. Phys. Today, 24–30, 1996.
[24] Yuksel, S. and Beceren, Y.: A Decomposition of Continuity. Selcuk Univ. Fac. of Arts
Science J., 14, 1, 79 – 83, 1997.
[25] V. Zaitsev. On certain classes of topological spaces and their bicompactifications. Dokl.
Akad. Nauk. SSSR., 178, 778–789, 1968.

Thank you for copying data from http://www.arastirmax.com