[1] G D Abrams. Morita equivalence for rings with local units. Communications in Algebra,
11: 801-837, 1983.
[2] B Afara and M V Lawson. Morita Equivalence of Semigroups with Commuting Idempotents.
Communications in Algebra, 40:1982-1996, 2012.
[3] P N Ánh and L Márki. Morita Equivalence for Rings without Identity. Tsukuba Journal of
Mathematics, 11: 1-16, 1987.
REFERENCES 279
[4] G Azumaya. Some Aspects of Fuller’s Theorem, Module theory. Lecture Notes in Mathematics,
700: 34-45, 1979.
[5] S Bulman-Fleming and M Mahmoudi. The Category of S-posets. Semigroup Forum, 71:
443-461, 2005.
[6] Y Q Chen and K P Shum. Morita Equivalence for Factorisable Semigroups. Acta Mathematica
Sinica, English Series, 17: 437-454, 2001.
[7] A H Clifford and G B Preston. The Algebraic Theory of Semigroups. American Mathematical
Society, Providence, R.I., 1961.
[8] R Colpi. Some Remarks on Equivalences between Categories of Modules, Communications
in Algebra, 18: 1935-1951, 1990.
[9] K R Fuller. Rings and Categories of Modulers. Springer-Verlag, New York. Heidelberg,
Berlin, 1974.
[10] K R Fuller. Density and Equivalence. Journal of Algebra, 29: 528-550, 1974.
[11] J Funk, M V Lawson and B Steinberg. Charaterizations of Morita Equivalent Inverse
Semigroups. Journal of Pure and Applied Algebra, 215: 2262-2279, 2011.
[12] J L Garcia. The Finite Column Matrix Ring of a Ring, Proceedings, 1st Belgian-Spanish
week on Algebra and Geometry, 64-74, 1988.
[13] J L Garcia and L Marín. Rings Having a Morita-like Equivalence. Communications in
Algebra, 27: 665-680, 1999.
[14] J L Garcia and J J Simòn. Morita Equivalence for Idempotent Rings. Journal of Pure and
Applied Algebra, 76: 39-56, 1991.
[15] N Jacobson. Basic Algebra II. Van Nostrand/Freeman, San Franciso, 1976.
[16] U Knauer. Projectivity of Acts and Morita Equivalence of Monoids. Semigroup Forum, 3:
359-370, 1972.
[17] H Komatsu. The Category of S-unital Modules. Mathematical Journal of Okayama University,
28: 54-91, 1986.
[18] S Kguno. Equivalence of Module Categories. Mathematical Journal of Okayama University,
28: 147-150, 1986.
[19] V Lann. Morita Theorem for Partially Ordered Monoids. Proceedings of the Estonian
Academy of Sciences, 60: 221-237, 2011.
[20] V Laan and L Márki. Strong Morita Equivalence of Semigroups with Local Units. Journal
of Pure and Applied Algebra, 215: 2538-2546, 2011.
REFERENCES 280
[21] V Laan and L Márki. Morita Invariants for Semigroups with Local Units. Monatsh Math,
166: 441-451, 2012.
[22] T Y Lam. Lectures on Rings and Modules. Springer-Verlag, New York, 1999.
[23] M V Lawson. Enlargements of Regular Semigroups. Proceedings of the Edinburgh Mathematical
Society, 39: 425-460, 1996.
[24] M V Lawson and L Márki. Enlargements and Coverings by Rees Matrix Semigroups.
Monatshefte Fur Mathematik, 129: 191-195, 2000.
[25] M V Lawson. Morita Equivalence of Semigroups with Local Units. Journal of Pure and
Applied Algebra, 215: 455-470, 2011.
NJ, 1998.
[26] L Márki and O Steinfeld. A Rees Construction without Regularity. In Contributions to
General Algebra, Hölder-Pichler-Temsky, Wien and Teubner, Stuttgart, 1988.
[27] D B McAlister. Regular Rees Matrix Semigroups and Regular Dubreil-Jacotin Semigroups.
Journal of the Australian Mathematical Society (Series A), 31: 325-336, 1981.
[28] D B McAlister. Rees Matrix Covers for Locally Inverse Semigroups. Transactions of the
American Mathematical Society, 277: 727-738, 1983.
[29] D B McAlister. Rees Matrix Covers for Regular Semigroups. Journal of Algebra, 89: 264-
279, 1984.
[30] D B McAlister. Rees Matrix Covers for Regular Semigroups. In Byleen, Jones and Pastijn,
editors, Proceedings of 1984 Marquette Conference on Semigroups, 131-141, Marquette
University, 1985, Milwaukee.
[31] D B McAlister. Quasi-ideal Embeddings and Rees Matrix Covers for Regular Semigroups.
Journal of Algebra, 152: 166-183, 1992.
[32] R Mckenzie. An Algebraic Version of Categorical Equivalence for Varieties and More
General Algebraic Categories. In S.P. Agliano, A. Ursini and M. Dekker, editors, Logic
and Algebra: Proceedings of the Magari Conference, Siena, 1996.
[33] B Mitchell. Theory of categories, Academic Press, 1965.
[34] K Morita. Duality of Modules and Its Applications to the Theory of Rings with Minimum
Condition. Science Rep. Tokyo Kyoiku Daigaku Sect., A6: 85-142, 1958.
[35] N Nobusawa. Gamma-rings and Morita Equivalence of Rings. Mathematical Journal of
Okayama University, 26: 151-156, 1984.
[36] M Parvathi and A Ranvakrishna Rao. Morita Equivalence for a Large Class of Rings.
Publicationes Mathematicae-debrecen, 35: 65-71, 1988.
REFERENCES 281
[37] B Pécsi. On Morita Contexts in Bicategories. Applied Categorical Structures, 20: 415–432.
2012.
[38] D Quillen. K0 Nonunital Rings and Morita Invariance. Journal für die Reine and Angewandte
Matliematik, 472: 197-217, 1996.
[39] D Rees. On Semigroups. Proceedings of the Cambridge Philosophical Society, 36: 387-400,
1940.
[40] J Rhodes and B Steinberg. The Q-theory of Finite Semigroups. Springer Monographs in
Mathematics, Springer, 2009.
[41] M Sato. Fuller’s Theorem on Equivalences. Journal of Algebra, 52: 274-284, 1978.
[42] B Steinberg. Strong Morita Equivalence of Inverse Semigroups. To appear in Houston
Journal of Mathematics.
[43] S Talwar. Morita Equivalence for Semigroups. Journal of the Australian Mathematical
Society (Series A), 59: 81-111, 1995.
[44] S Talwar. Strong Morita Equivalence and a Generalisation of the Rees Theorem. Journal
of Algebra, 181: 371-394, 1996.
[45] S Talwar. Strong Morita Equivalence and the Synthesis Theorem. International Journal
of Algebra and Computation, 6: 123-141, 1996.
[46] J L Taylor. A Bigger Brauer Group. Pacific Journal of Mathematics, 103: 163-203, 1982.
[47] J Trlifaj. On -modules Generating the Injectives. Rendiconti del Seminario Matematico
della Université di Padova, 88: 211-220, 1992.
[48] Y H Xu. An Equivalence between the Ring F and Infinite Matrix Subrings over F. Chinese
Annals of Mathematics, Series B, 1: 66-69, 1990.
[49] Y H Xu, K P Shum and R F Turner-Smith. Morita-like Equivalence of Infinite Matrix
Subrings. Journal of Algebra, 159: 425-435, 1993.
Thank you for copying data from http://www.arastirmax.com