You are here

Epilepsi Hastalarında İnteriktal EEG ve Nöbet Prognozu Arasındaki İlişkinin Araştırılması

The Assessment of Relationship Between Interictal E EG Analysis and Seizure Prognosis

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Objectives: To examine the relationship between E EG attributes and clinic attacks, and to define the value of inter-ictal EEG observation in defining the prognosis. Materials and Methods: Seventy four patients registered at PTT Training Hospital Neurology Clinic Epilepsy unit and 387 EEG belonging to them were evaluated retrospectively and prospectively. An EEG examination was accepted abnormal if it included epileptiform activity, slow wave, amplitude anomalies, or if resembled normal activity but displayed certain patterns indicating deviations in frequency, reactivity, dispersion and in other attributes. A decrease of more than 50% in normal or inter-ictal epileptiform activities, or in above mentioned EEG abnormalities was accepted as an improvement in E EG pattern. Ability to control clinically defined attacks (no attacks experienced by the patient) or a decrease of more than 75% compared to the period before the initiation of medication are accepted as indicators of good prognosis. Results: Our study group comprised 36(48.6%) female and 38(51.4%) male patients, with a mean age of 21.62±12.72 (R:9-78). Of 26 subjects with good prognosis, betterments were observed during EEG examinations in inter-ictal activities in 16(%44.4). Twenty (55.6%) subjects among 48 patients with bad prognosis were observed to have betterments in inter-ictal activities. Relations between E EG findings and prognosis were evaluated via chi-square tests. There was no statistically significant difference between percentage rates (P=0.103). Conclusion: Inter-ictal E EG attributes may give information about the prognosis and the presence of clinic attacks. The analysis is more valuable in adult patients without any associated pathology. It was suggested that studies with a greater number of patients examining a greater number of EEGs is required. ©2006, Fırat Üniversitesi, Tıp Fakültesi
Abstract (Original Language): 
Amaç: E EG özellikleriyle klinik nöbet arasındaki ilişkiyi incelemek ve interiktal EEG takibinin prognozu saptamada değerini ortaya koymak. Gereç ve Yöntem: PTT Eğitim Hastanesi Nöroloji Kliniği Epilepsi ünitesince kayıtları bulunan 74 hasta ve bu hastalara ait 387 EEG geriye ve ileriye dönük olarak değerlendirildi. Bir E EG incelemesi; epileptiform aktivite, yavaş dalga, amplitüd anormallikleri ya da normal aktiviteyi andıran ancak, frekans, reaktivite, dağılım ve diğer özelliklerinde sapma gösteren belirli paternleri kapsıyorsa anormal kabul edildi. Normal ya da interiktal epileptiform aktivitelerde ya da yukarıda adı geçen EEG anormalliklerinde %50'den fazla azalma olması EEG paterninde düzelme olarak not edildi. Klinik olarak tanımlanan nöbetlerin kontrol altına alınabilmesi (hastanın hiç nöbet geçirmemesi ) veya nöbet sayısında ilaç kullanımı öncesine kıyasla %75'den fazla azalma gözlenmesi iyi prognoz göstergesi olarak kabul edildi. Bulgular: Çalışma grubumuz yaş ortalaması 21.62±12.72 (R:9-78) yıl olan 36(%48.6) kadın ve 38(%51.4) erkek hastadan oluşmaktaydı. Prognozu iyi olan 26 olgunun 16(%44.4)'sında E EG incelemesinde interiktal aktivitelerde düzelme izlendi. Prognozu kötü olan 48 olgunun 20(%55.6)'sinde EEG incelemesinde interiktal aktivitelerde düzelme izlendi. EEG bulguları ve prognoz arasındaki ilişki ki-kare testi ile değerlendirildi. Yüzde oranlar arasındaki farklılık istatistiksel olarak anlamlı bulunmadı (P=0.103). Sonuç: İnteriktal EEG kayıtlarındaki düzelmenin not edilmesi hastaların prognozu ve nöbet kontrolü hakkında bilgi verebilir. Hastaların erişkin yaş grubunda olması ve eşlik eden patoloji olmaması EEG analizini daha değerli kılacaktır. Daha çok hasta ve daha fazla sayıda EEG incelemesiyle yapılacak çalışmalara ihtiyaç olduğu düşünüldü. ©2006, Fırat Üniversitesi, Tıp Fakültesi
58-61

REFERENCES

References: 

1. Salinsky M, Kanter R, Dashieff RM: Effectiveness of multiple EEGs in supporting the diagnosis of epilepsy: An operational
curve. Epilepsia 1987; 28: 331-334.
2. Logar C, Walzl B, Lechner H: Role of long-term EEG monitoring in diagnosis and treatment of epilepsy. Eur Neurol 1994; 34
Suppl 1: 29-32.
3. Mark Manford. Assessment And Investigation Of Possible Epileptic Seizures. J Neurol Neurosurg Psychiatry 2001; 70: 3-8.
4. Legatt AD, Ebersole JS: Options for long term monitoring. Epilepsy. A comprehensive textbook 1998; 1: 1001-1020.
5. Guberman A, Bruni J. Investigations. Part 4 in Essentials of clinical epilepsy. Butterworth-Heinemann, USA. 1999, 2nd edi. P
60.
6. Salinsky et al. Effectiveness of multiple EEGs in supporting the diagnosis of epilepsy: an operational curve. Epilepsia 1987; 28: 331-334.
7. Başoğlu M. Tedaviler. Epilepsiler isimli kitapta, Bölüm: 8, s.178,
Akal Ofset, İzmir, 2001.
8. Holowach-Thurston JH, Thurston DL, Hixon BB et al. Prognosis in childhood epilepsy: Aditional follow up of 148 children 15 to 23 years after withdrawal of anti-convulsant therapy. N Eng J
Med 1982; 306: 831-6.
9. Medical Research Council Antiepileptic Drug Withdrawal Study Group: Randomised study of antiepileptic drug withdrawal in patients with remission. Lancet 1991; 337: 1175-80.
10. Berg AT, Shinnar S. Relaps following discontinuation of anti-epileptic drugs : A meta-analysis. Neurology 1994; 44: 601-8.11. Peters AC, Brouwer OF, Geerts AT et al. Randomised prospective study of early discontinuation of antiepileptic drugs in children with epilepsy. Neurology 1998; 50: 724-30.
12. Galimberti CA, Manni R, Parietti L, et al. Drug withdrawal in patients with epilepsy. Prognostic value of the EEG. Seizure
1993; 2: 213-20.
13. Shinnar S, Berg AT, Moshe SL, et al. Discontinouing antiepileptic drugs in children with epilepsy: A prospective study.
Ann Neurol 1994; 35: 534-45.
14. Shinnar S, Kang H, Berg AT, Goldensohn ES, Hauser WA,
Moshe SL.EEG abnormalities in children with a first unprovoked seizure. Epilepsia. 1994; 35: 471-6.
15. Callaghan N, Garrett A, Goggin T. Withdrawal of anti-convulsant drugs in patients free of seizures for three years. N Eng J Med
1988; 318: 942-6.
16. Tinuper P, Avoni P, Riva R et al. The prognostic value of the electroencephalogram in anti-epileptic drug withdrawal in partial epilepsies. Neurology 1996; 47: 76-78.
17. Kim JM, Jung KY, Choi CM. Changes in brain complexity during valproate treatment in patients with partial epilepsy.
Neuropsychobiology 2002; 2: 106-112.
18. Libenson MH, Caravale B. Do antiepileptic drugs differ in suppressing interictal epileptiform activity in children? Pediatr
Neurol 2001; 24: 214-218.
19. Konishi T, Naganuma Y, Hongou K, Murakami M, Yamatani M, Okada T. Effects of antiepileptic drugs on EEG background activity in children withepilepsy: initial phase of therapy. Clin
Electroencephalogr 1995; 26: 113-119.

Thank you for copying data from http://www.arastirmax.com