You are here

Astım Atağındaki Hastalarda Inhaler N-Asetil-L-Sistein Tedavisinin Indükte Balgamda Glutatyon ve Nitrit Seviyeleri Üzerine Etkisi

Effect of Inhaled N-Acetyl-L-Cysteine Treatment on Induced Sputum Glutathione and Nitrite

Journal Name:

Publication Year:

Abstract (2. Language): 
Objective: An imbalance between oxidants-antioxidants is known to play an important role in the pathogenesis of asthma, especially during exacerbation. The aim of this study was to investigate the effect of N-acetyl-L-cysteine (NAC) treatment on the levels of sputum nitrit (NO2-) and reduced glutathione (GSH) contents in patients with asthma during exacerbations. Materials and Methods: The study had a double blind, placebo controlled design. Induced sputum GSH, NO2-, cell counts and plasma NO2- contents were evaluated in 11 healthy controls (HCs) and 25 patients with asthma during exacerbation before and after treatment. Fifteen patients with acute asthma attack were treated with inhaled NAC during exacerbation. Results: Plasma-sputum NO2- and sputum GSH contents were significantly higher in subjects with asthma subgroups than HCs (p<0.01 for NAC treatment group, p<0.005 for placebo treatment group, for plasma NO2-; p<0.001 for both groups for sputum NO2-; p<0.001 for both groups for sputum GSH). NAC treatment group had higher GSH contents in sputum samples after treatment which were, however, not significantly different from those before treatment. There was a significant decrease in sputum (p<0.005 for NAC treatment group, p<0.01 for placebo group) and plasma NO2- (p<0.005 for NAC treatment group, p<0.01 for placebo group) levels in both NAC treatment group and placebo group after treatment when compared with the pretreatment levels. Conclusion: These findings indicated that addition of NAC to standard attack therapy does not modify the oxidant-antioxidant status in asthma patients during exacerbation. ©2008, Firat University, Medical Faculty.
Abstract (Original Language): 
Amaç: Oksidanlar ile antioksidanlar arasındaki dengesizlik astım patogenezinde, özellikle de ataklar sırasında önemli rol oynamaktadır. Bu çalışmanın amacı N-asetil-L-sistein (NAC) tedavisinin astım atağındaki hastaların balgam nitrit (NO2-) ve redükte glutatyon (GSH) seviyeleri üzerine etkilerini araştırmaktır. Gereç ve Yöntem: Bu çift-kör plasebo kontrollü bir çalışmadır. Onbir sağlıklı kontrol (SK) ve 25 astım atağındaki hastanın indükte balgamlarında GSH, NO2- seviyeleri, hücre sayımları ve plazma NO2- seviyeleri tedavi öncesi ve sonrası dönemde değerlendirildi. Akut astım atağındaki 15 hastaya atak süresince inhaler NAC tedavisi verildi. Bulgular: Astım subgruplarında plazma ve balgam NO2- ve balgam GSH seviyeleri SK grubunda anlamlı derecede yüksek bulundu (plazma NO2-seviyesi için; NAC tedavisi alan grupta p<0.01, plasebo uygulanan grupta p<0.005, balgam GSH ve NO2-seviyesi için her iki gruptap<0.001). NAC tedavisi alan grubun balgam GSH seviyesi tedavi sonrasında, tedavi öncesi değere göre anlamlı olmamakla birlikte artış gösterdi. NAC tedavisi ve plasebo uygulanan her iki grupta balgam ve plazma NO2- seviyeleri tedavi sonrasında anlamlı derecede azaldı (balgam NO2- seviyesi için NAC tedavisi alan grupta p<0.005, plasebo uygulanan grupta p<0.01; plazma NO2- seviyesi için NAC tedavisi alan grupta p<0.005, plasebo uygulanan grupta p<0.01). Sonuç: Bu bulgular astım hastalarına atak sırasında standart atak tedavisine NAC eklenmesinin oksidan-antioksidan dengeyi değiştirmediğini göstermektedir. ©200008, Fırat Üniversitesi, Tıp Fakültesi
43-48

REFERENCES

References: 

1. Dworski R. Oxidant stress in asthma. Thorax 2000; 55: 51-53.
2. Barnes PJ. Pathophysiology of asthma. In: Asthma. Chung F, Fabbri LM (eds). The European Respiratory Monograph, ERS Journals Ltd, Monograph 2003; 23: 84-113.
3. Owen S, Pearson D, Suarez-Mendez V, et al. Evidence of free-radical activity in asthma. N Engl J Med 1991; 325: 586-587.
4. Calhoun WJ, Bush RK. Enhanced reactive oxygen species metabolism of airspace cells and airway inflammation follow antigen challenge in human asthma. J Allergy Clin Immunol 1990;
86: 306-313.
5. Henrichs PAJ, Nijkamp FP. Reactive oxygen species as mediators in asthma. Pulmonary Pharmacology and Therapeutics 2001; 14:
409-421.
6. Rahman I, Morrison D, Donaldson K, Mac Nee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med 1996; 154: 1055-1060.
7. Deveci F, Ilhan N, Turgut T, et al. Glutathione and nitrite in induced sputum from patients with stable and acute asthma compared with controls. Ann Allergy Asthma Immunol 2004; 93:
91-97.
8. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide,
47
Fırat Tıp Dergisi 2008;13(1): 43-48
hydroxyl radical, superoxide, and hypochlorous acid. Free Radic
Biol Med 1989; 6: 593-597.
9. Gillissen A, Nowak D. Characterization of N-acetylcysteine and ambroxol in antioxidant therapy. Respir Med 1998; 92: 609-623.
10. National Heart, Lung, and Blood Institute, National Institutes of Health. Global Strategy for Asthma Management and Prevention NHLBI/WHO Workshop Report Revised Global Initiative for
Asthma (GINA 2002), Publication no. 02-3659. Bethesda: National Institutes of Health, 2002.
11. Dauletbaev N, Rickmann J, Viel K, et al. Glutathione in induced sputum of healthy individuals and patients with asthma. Thorax 2001; 56: 13-18.
12. Vlachos-Mayer H, Leigh R, Sharon RF, et al. Success and safety of sputum induction in the clinical setting. Eur Respir J 2000; 16:
997-1000.
13. Akerboom TP, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 1981; 77: 373-382.
14. Buhl R, Vogelmeier C, Critenden M, et al. Augmentation of glutathione in the fluid lining the epithelium of the lower respiratory tract by directly administering glutathione aerosol. Proc Natl Acad Sci U S A 1990; 87: 4063-4067.
15. Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 1982;
126: 131-138.
16. Kelly FJ, Mudway I, Blomberg A, et al. Altered lung antioxidant status in patients with asthma. Lancet 1999; 354: 482-483.
17. Smith LJ, Houston M, Anderson J. Increased levels of glutathione in bronchoalveolar lavage from patients with asthma. Am Rev Respir Dis 1993; 147: 1461-1464.
18. Borm PJ, Bast A, Wouters EF, et al. Red blood cell antioxidant parameters in healthy elderly control subjects versus silicosis
patients. Free Rad Res Comm 1987; 3: 117-127.
19. Toth KM, Berger EM, Beehler CJ, Repine JE. Erytrocytes from cigarette smokers contain more glutathione and catalase and protect endothelial cells from hydrogen peroxide than do erytrocytes from nonsmokers. Am Rev Respir Dis 1986; 134: 281¬284.
20. Bibi H, Schlesinger M, Tabachnic E, et al. Erytrocyte glutathione peroxidase activity in asthmatic children. Ann Allergy 1988; 61:
339-340.
21. Corradi M, Folesani G, Andreoli R, et al. Aldehydes and glutathione in exhaled breath condensate of children with asthma
exacerbation. Am J Respir Crit Care Med 2003; 167: 395-399.
22. Kelly FJ. Glutathione: in defence of the lung. Food and Chemical
Toxicology 1999; 37: 963-966.
23. Gustafsson L. Exhaled nitric oxide as a marker in asthma. Eur
Respir J 1998; 11 (Suppl. 26): 49-52.
Kırkıl
v
e Ark.
24. Kanazawa H, Shoji S, Yamada M, et al. Increased levels of nitric oxide derivatives in induced sputum in patients with asthma. J
Allergy Clin Immunol 1997; 99: 624-629.
25. Dupont LJ, Rochette F, Demedts MG, Verleden GM. Exhaled NO
correlates with airway hyperresponsiveness in steroid-naive patients with mild asthma. Am J Respir Crit Care Med 1998; 157:
894-898.
26. Massaro AF, Mehta S, Lilly CM, et al. Elevated NO
concentrations in isolated lower airways gas of asthmatic subjects. Am J Respir Crit Care Med 1996; 153: 1510-1514.
27. Hunt JF, Fang K, Malik R, et al. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care
Med 2000; 161: 694-699.
28. Beckman JS, Koppenol WH. NO, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996; 40: 1424¬1437.
29. Bylin G, Hedenstierna G, Lagerstrand L, Wagner PD. No influence of acetylcysteine on gas exchange and spirometry in
chronic asthma. Eur J Respir Dis 1987; 71: 102-107.
30. Millman M, Millman FM, Goldstein IM, Mercandetti AJ. Use of acetylcysteine in bronchial asthma--another look. Ann Allergy
1985; 54: 294-296.
31. Meister A. Glutathione metabolism and its selective modification.
J Biol Chem 1988; 263: 17205-17208.
32. Bridgeman MM, Marsden M, MacNee W, et al. Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax 1991; 46: 39¬42.
33. Mulier B, Rahman I, Watchorn T, et al. Hydrogen peroxide-induced epithelial injury: the protective role of intracellular nonprotein thiols (NPSH). Eur Respir J 1998; 11: 384-391.
34. Meyer A, Buhl R, Magnussen H. The effect of oral N-acetylcysteine on lung glutathione levels in idiopathic pulmonary
fibrosis. Eur Respir J 1994; 7: 431-436.
35. Cotgreave IA, Eklund A, Larsson K, Moldeus PW. No penetration of orally administered N-acetylcysteine into bronchoalveolar
lavage fluid. Eur J Respir Dis 1987; 70: 73-77.
36. Bridgeman MM, Marsden M, Selby C, et al. Effect of N-acetyl cysteine on the concentrations of thiols in plasma, bronchoalveolar lavage fluid, and lung tissue. Thorax 1994; 49: 670-675.
37. Szkudlarek U, Zdziechowski A, Witkowski K, et al. Effect of inhaled N-acetylcysteine on hydrogen peroxide exhalation in healthy subjects. Pulm Pharmacol Ther 2004;17: 155-162.
38. Rysz J, Stolarek RA, Luczynski R, et al. Increased hydrogen peroxide concentration in the exhaled breath condensate of stable COPD patients after nebulized N-acetylcysteine. Pulm Pharmacol Ther 2007; 20: 281-289.

Thank you for copying data from http://www.arastirmax.com