You are here

Egzersiz Protokolünün Kalp Atım Hızı-İş Gücü İlişkisine Dayanan Anaerobik Eşik Hesaplanmasına Etkisi

Effects of Exercise Protocol on the Estimation of Anaerobic Threshold Based on Heart Rate-Work Rate Relationships

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Aim: We investigated the effects of work different work load increments on the validity of non-invasive aerobic to anaerobic metabolic transition point estimation from heart rate-work rate relationships during incremental exercise tests. Material and Method: Thirteen male subjects (21.0±0.4 yr) performed two incremental exercise tests with work rates of 15 W/min (W15) and 30 W/min (W30) until the limit of tolerance using an electromagnetically-braked cycle ergometer. During exercise, heart rate was measured using polar heart rate watch; respiratory parameters were estimated using spirometry. Aerobic to anaerobic metabolic transition point estimated from ventilation to work rate relationships and compared with heart rate-work rate relationship. Results: We have found three different responses in heart rate-work rate relationships during incremental exercise test. A linear relationships observed in 6 (W15) and 7 (W30) subjects. Heart rate-work rate relationship showed a deflection to left side in 2 (W15) and 4 (W30) subjects and a right side deflection in 5 (W15) and 2 (W30) subjects. There was no an association between aerobic to anaerobic metabolic transition point and heart rate-work rate deflection point only in any subjects. Conclusion: Consequently, heart rate-work rate deflection point may not provide accurate aerobic to anaerobic metabolic transition point estimation. The different work protocols may also lead changes in heart rate-work rate relationships. Thus, investigators or clinicians should be careful using heart rate deflection point. ©2004, Fırat Üniversitesi, Tıp Fakültesi
Abstract (Original Language): 
Amaç: Farklı egzersiz protokollerinin kalp atım hızı-iş gücü arasındaki ilişki ile aerobik-anaerobik metabolizma değişim bölgesinin non-invazif olarak tespit edilmesindeki etkinliği araştırıldı. Gereç ve Yöntem: On üç erkek denek (21.0±0.4 yıl) elektro manyetik bisiklet ergometre ile protokolleri 15 (W15) W/dk ve 30 W/dk (W30) olarak artan yüke karşı yapılan egzersiz testlerine katıldılar. Egzersiz sırasında, kalp atım hızları polar kalp saati ile, solunum parametreleri ise spirometre ile ölçülüp değerlendirildi. Aerobik-anaerobik metabolizma değişim bölgesi, solunum-iş gücü ilişkisi ile hesaplandı ve kalp atım hızı-iş gücü ile karşılaştırırldı. Bulgular: Egzersiz sırasında kalp atım hızı-iş gücü arasında ilişki 3 farklı şekilde gözlendi. Kalp atım hızı artan iş gücü ile lineer olarak 6 (W15) ve 7 (W30) artma gösterdi. Kalp atım hızında sola kırılma 2 (W15) ve 4 (W30) denekte, sağa kırılma ise 5 (W15) ve 2 (W30) denekte gözlendi. Aerobik-anaerobik metabolizma değişim bölgesi ile kalp atım hızı kırılma noktası deneklerin hiçbirinde gözlenmedi. Sonuç: Kalp atım hızı kırılma noktası aerobik-anaerobik metabolizma değişim bölgesi hesaplanmasında etkin bir sonuç vermemektedir. Uygulanan egzersiz protokolü ise kalp atım kırılım yönlerinde kısmi değişikliklere neden olmaktadır. Bu nedenle kalp atım hızı iş gücü ilişkisi ileri çalışmalara ihtiyaç duymakta ve klinik alanda antrenman veya egzersiz programlarının hazırlanmasında uygulanırken dikkat edilmelidir. ©2004, Fırat Üniversitesi, Tıp Fakültesi
40-44

REFERENCES

References: 

1. Wasserman K, Hansen JE, Sue DY, Whipp BJ. Principles of Exercise Testing and Interpretation 2. Edition, Edited by HARRIS JM, Lea & Febiger Publishing Company: Philadelphia.
1994: 18-72.
2. Whipp BJ. Domains of aerobic function and their limiting parameters. In: The Physiology and Pathophysiology of Exercise Tolerance. Edited by Ward SA, Part 3, Chapter 12, Plennum Press, New York. 1996: 83-89.
3. Casaburi R, Wasserman K, Patessio A, Ioli F, Zanaboni S, Donner CF. A new perspective in pulmonary rehabilitation: anaerobic threshold as a discriminant in training. Eur Respir J 1989; 2 (Suppl): 618-623.
4. Sullivan MJ, Cobb FR. The anaerobic threshold in chronic heart failure. Relation to blood lactate, ventilatory basis, reproducibility and response to exercise training. Circulation. 1990; 81(Suppl):
47-58.
5. Matsumura N, Nishijima H, Koima S, Hashimoto F, Minami M, Yasuda H. Determination of anaerobic threshold for assessment of functional state in patients with chronic heart failure.
Circulation. 1983; 68: 360-367.
6. Older P, Hall A. The role of cardiopulmonary exercise testing for preoperative evaluation of elderly. From Exercise Gas Exchange in Heart Disease. Edited by Wasserman K: Armonk, NY: Futura
Publishing Company. Chapter 20, 1996; 287-291.
7. Yoshida T, Nagata A, Muro M, Takeuchi N, Suda Y. The validity
of anaerobic threshold determination by a Douglas bag method compared with arterial blood lactate concentration. Eur J Appl Physiol. 1981; 46: 423-430.
8. Hollmann W. Historical remarks on the development of the aerobic-anaerobic threshold up to 1966. Int J Sports Med 1985; 6:
109-116.
9. Conconi F, Ferrari M, Ziglio PG, Droghetti P, Codeca L. Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 1982; 52: 869-873.
10. Ballarin E, Borsetto C, Cellini M, Patracchini M, Vitiello P, Ziglio PG, Conconi F. Adaptation of the "conconi test" to children and adolescents. Int J.Sports Med 1989; 10:334-338.
11. Conconi F, Grazzi G, Casoni I. The Conconi test: methodology after 12 years of application. Int J Sports Med 1996; 17:509-519.
12. Droghetti P, Borsetto C, Casoni I, Cellini M, Ferrari M, Paolini AR, Ziglio PG, Conconi F. Non-invasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller and ice-skating, rowing and walking. Eur J Appl Physiol
1985; 53: 299-303.
13. Jones AM, Doust JH. The Conconi test in not valid for estimation of the lactate turnpoint in runners. J Sports Sci 1997; 15: 385¬394.
14. Bodner ME, Rhodes EC. A review of the concept of the heart rate deflection point. Sports Med 2000; 30:31-46.
15. Whipp BJ, Davis JA, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise. J Appl Physiol
1981; 50: 217-221.
16. Zeballos JR, Weisman IM. Behind the scenes of cardiopulmonary exercise testing. Clin Exer Test 1994; 15: 193-213.
17. Whipp B J. The bioenergetic and gas exchange basis of exercise testing. Clin Chest Med 1994; 15: 173-191.
18. Karlsson J. Lactate and phosphagen concentrations in working muscle of man. Acta Physiol Scand 197; 358 (Suppl): 7-72.
19. Beaver WL, Wasserman K, Whipp BJ. Bicarbonate buffering of lactic acid generated during incremental exercise. J Appl Physiol
1986; 60: 472-478.
43
Fırat Tıp
Dergis
i 2004;9(2): 40-44
20. Stringer W, Casaburi R, Wasserman K. Acid-base regulation during exercise and recovery in humans. J Appl Physiol 1992; 72:
954-961.
21. Whipp BJ, Mahler M. Dynamics of pulmonary gas exchange during exercise. In: Pulmonary Gas Exchange. Vol II, edited by
West JB. New York: Academic Press 1980; 33-96.
22. Rausch SM, Whipp BJ, Wasserman K, Huszczuk A. Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J Physiol 1991; 444: 567-578.
23. Ward SA. Assessment of peripheral chemoreflex contributions to exercise hyperpnea in humans. Med Sci Sports Exer 1994; 26:
303-310.
24. Vachon JA, Bassett DR, Clarke S. Validity of the heart rate deflection point as a predictor of lactate threshold during running. J Appl Physiol 1999; 87: 452-459.
25. Bourgois J, Vrijens J. The Conconi test: a controversial concept for the determination of the anaerobic threshold in young rowers. Int J Sports Med. 1998 19(8):553-9.
26. Urhausen A, Weiller B, Coen B, Kindermann W. Plasma catecholamines during endurance exercise of different intensities
Özçelik
v
e Ark.
as related to the individual anaerobic threshold. Eur J Appl
Physiol 1994; 69: 16-20.
27. Gregory JE, Kenins P, Proske U. Can lactate-evoked cardivascular responses be used to identify muscle ergoreceptors.
Brain Res 1987; 404: 375-378.
28. Ozcelik O, Kelestimur H. Effects of acute hypoxia on the determination of anaerobic threshold using the heart rate-work rate relationships during incremental exercise tests. Physiol Res. 2004; 53(1):45-51.
29. Schmid A, Huonker M, Aramendi JF, Kluppel E, Barturen JM, Grathwohl D, Schmidt-Trucksass A, Berg A, Keul J. Heart rate deflection compared to 4 mmol x l(-1) lactate threshold during incremental exercise and to lactate during steady-state exercise on an arm-cranking ergometer in paraplegic athletes. Eur J Appl Physiol Occup Physiol 1998; 78(2): 177-182.
30. Ribeiro JP, Fielding RA, Hughes V, Black A, Bochese MA,
Knuttgen HG. Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 1985; 6:
220-224.

Thank you for copying data from http://www.arastirmax.com