You are here

Farklı Nem Düzeylerinde Kanola Tohumlarının Fiziksel Özelliklerinin Belirlenmesi

Determination of the Physical Properties of the Canola Seeds in Different Moisture Content Levels

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The purpose of the research was the studying of the effects of three different moisture contents constituting of 6.36, 16.54 and 25.94% on the physico-mechanical properties of canola seeds. Turkish cultivar of canola seeds called as ‘Turan’ was used in the research. With the research, it was found that the dimensional properties such as the length, diameter, projection area and geometric mean diameter and volumetric properties like the bulk density, one thousand seed mass, porosity and sphericity were changed with the increases in moisture content of canola seeds. One thousand kernel mass and kernel volume of canola seeds are determined to increase for the moisture contents examined as 6.36, 16.54 and 25.94 %, respectively. The projection areas of canola kernels were investigated with two different digital image processing software developed for digital image processing and evaluation purposes, as well as with the mathematical formula given by Mohsenin (1986) and Sitkei (1986) according to the planes in the three dimensional space. In the study, true density was observed to increase with the moisture content increments in canola seed, while the bulk density of seed decreased with moisture content increments. Similarly, the equivalent spherical diameter of canola kernels was observed to increase with the moisture content. The variations on the sphericity of canola kernels depending on the moisture contents were as the increasing way while the moisture contents of canola seeds went from 6.36 to 16.54%, and then in decreasing way when they increased to 25.94%. Yet, it was seen that the variations of the oblateness of the seeds decreasingly increase with the increases of moisture contents. Finally, terminal velocity of the canola seeds investigated with this study showed a logarithmic variation trend by increasing with the moisture content increases.
Abstract (Original Language): 
Bu araştırmayla, pnömatik iletimlerinde %6.36, 16.54 ve 25.94 şeklindeki üç farklı nem düzeyinin kanola tohumunun fiziksel özellikleri üzerine etkileri incelenmiştir. ‘Turan’ kanola çeşidi bitkisel materyal olarak kullanılmıştır. Araştırmayla kanolanın uzunluk, genişlik, kalınlık, çap, projeksiyon alanı ve geometrik ortalama çap gibi boyut özellikleri ile hacim ağırlığı, özgül kütle, bin dane ağırlığı, porozite, küresellik, basıklık ve eşdeğer küre çapı gibi hacimsel özelliklerinin neme bağlı değişimi belirlenmiştir. Kanola tohumlarının projeksiyon alanları iki farklı sayısal görüntü işleme yazılımı kullanılarak incelenmiştir. Araştırmada, Kanola tohumlarının dane hacmi ile bin dane ağırlıklarının nemle arttığı, özgül kütlenin kanola tohumunun nem içeriğindeki artışlarla artacağı, bunun yanında hacim ağırlığının ise dane nem içeriğindeki artışlara bağlı olarak azaldığı gözlenmiştir. Benzer şekilde, eşdeğer küre çaplarının, danenin nem içeriğiyle arttığı bulunmuştur. Nem içeriklerindeki artışa bağlı olarak kanola tohumlarının küreselliğindeki değişimler; nem içerikleri %6.36’ dan %16.54’ e yükseldiğinde artış yönünde, daha sonrasında nem içerikleri %25.94’ e çıktığında azalan seyir gösterdi. Tohumların nem içeriklerindeki artışa bağlı olarak basıklık oranındaki değişimlerin ise göreceli olarak nem içeriği %16.54’ e çıktığında azaldığı, %25.94’ ü bulduğunda ise artığı saptanmıştır. Araştırma kapsamında incelenen Kanola tohumlarının pnömatik yollarla iletimlerinde sistem tasarımındaki önemli parametrelerden birisini oluşturan terminal hız değerlerinin neme bağlı değişimleri; logaritmik artan bir değişim eğilimi göstermiştir.
10
24

REFERENCES

References: 

Anonymous. (2008). Biology of Brassica Napus L.
(Canola). Version 2. Australian Government. Office of
Gene Technology Regulator (OGTR). February.
http://www.ogtr.gov.au/internet/ogtr/
publishing.nsf/content/canola-
/$FILE/biologycanola08_2.pdf. Accessed to web:
16.03.2016.
Al-Manash, M. A. and Rababah, T. M. (2007). Effect of
Moisture Content on Some Physical Properties of
Green Wheat. Journal of Food Engineering, 79.
Aviara, N.A., Oluwole, F.A., Haque, M.A., (2005). Effect
of moisture content on somephysical properties of
sheanut (Butyrospernum paradoxum). International
Agrophysics 19, 193–198.
Aviara, N. A., Power, P. P. and Abbas, T. (2013).
Moisture Dependent Physical Properties of Moringa
oleifera Seed Relevant in Bulk Handling and
Mechanical Processing. Industrial Crops and Products,
42. 96-104. www.elsevier.com/locate/indcrop.
Baryeh, E. A. (2002). Physical Properties of Millet.
Journal of Food Engineering, 51.
Bell, K. (2000). Visual Identification Of Small Oilseeds
And Weed Seed Contaminants. Canadian Grain
Commission(CGC). Grain Biology Bulletin No. 3. 34
pages.
Çalışır, S., Marakoğlu, T., Öğüt, H. and Öztürk, Ö. (2005).
Physical Properties of Rapeseed (Brassica napus
oleifera L.). Journal of Food Engineering. 69(1), 61 –
66.
Colton, B., Potter, T. (1999). History. In “Canola in
Australia: The First Thirty Years”. (Eds: Salisbury, P.
A., Potter, T. D., McDonald, G., Green, A. G.). pp.1-4.
Proceedings of the 10th International Rapeseed
Congress.
Dash, A. K., Pradhan, R.C., Das, L.M., and Naik, S.N.
(2008). Some Physical Properties of Simarouba fruit
and Kernel. Int. Agrophysics, 22. 111-116.
Davies R.M. (2010). Some physical properties of arigo
seeds. Int. Agrophys., 24, 89-92.
Desphande, S. D., Bal, S. and Ojha, T.P. (1993). Physical
Properties of Soybean. Journal of Agricultural
Engineering Research, 56. 89-98.
Dutta, S. K., Nema, V. K. and Bhardwaj, R. K. (1988).
Physical Properties of Gram. Journal of Agricultural
Engineering Research, 39. 269-275..
Gorial, B.Y. and J.R. O’callaghan, (1990). Aerodynamic
properties of grain/straw materials. J. Agric. Eng. Res.,
46: 275-290.
Güner, M. (2006). Determination of Pneumatic Conveying
Characteristics of Some Agricultural Crops.
TÜBİTAK Project, TOGTAG 3258.
İzli, N., Ünal, H. ve Sincik, M. (2009). Physical and
Mechanical Properties of Rapeseed at Different
Moisture Content. International Agrophysics. 23. pp.
137 -145.
Kingsly, A. R. P., Singh, D. B., Manikantan, M. R. Ve
Jain, R. K. (2006). Moisture Dependent Physical
Properties of Dried Pomegranate Seeds (Anardana).
Journal of Food Engineering. 75, 492 – 496.
Mohsenin, Nuri N., (1986). Physical Properties of Plant
And Animal Materials(Second Revised and Updated
Edition). Gordon and Breach, Science Publishers, Inc.,
Newyork, USA.
Ogunjimi, L. O., Aviara, N. A., and Aregbesola, O. A.
(2002). Some Engineering Properties of Locust Bean
Seed. Journal of Food Engineering, 55(2), 95–99.
Oluka, S.I. and Eze, P. C. (2014). Selected Physical and
Aerodynamic Properties of Nerica. Journal of
Agricultural Engineering and Technology (JAET),
Volume 22 (No.3).
Oluwole, F., Aviara, N. and M. Haque. (2007). Effect of
Moisture Content and Impact Energy on the
Crackability of Sheanut. Agricultural Engineering
International: the CIGR Ejournal. Manuscript FP 07
002 Vol. IX. October,
Özturk, T. and Esen, B., (2008). Physical and mechanical
properties of barley. Agric. Trop.Subtrop. 41 (3), 117–
121.
Panasiewicz, M., Nadulski, R., Zawislak, K., Mazur, J. ve
Sobczak, P. (2012). Influence of Moisture Content on
Selected Physical Properties Of Rapeseeds And The
Processes Of Cleaning And Separation. TEKA.
Commission of Motorization and Energetics in
Agriculture. 12(1), 191 – 194.
Razavi, S.M.A., Mohammad, A. A., Rafe, A., and
Emadzadeh, B., (2007). The Physical Properties Of
Pistachio Nut And İts Kernel As A Function Of
Moisture Content And Variety. Part III. Frictional
Properties. J. Food eng., 81, 226-235.
Razavi, S. M. A., Moghaddam, T. M. and Amini, A. M.
(2008). Physical – Mechanical Properties and
Chemical Composition of Balangu (Lallemantia
royleana (Benth. In Walla)) Seed. International
Journal of Food Engineering. 4(5), 10 pages.
Razavi, S. M. A., Yeganehzad, S. and Sadeghi, A. (2009).
Moisture Dependent Physical Properties of Canola
Seeds. J. Agric. Sci. Technol. 11, 309 – 322.
Sahoo, P. K. and Srivastava, A. P. (2002). . Physical
Properties of Okra Seeds. Biosystems Engineering, 83.
441-448.
Sessiz. A. , R. Esgici and S. Kızıl. 2007. Moisturedependent
physical Properties of caper (Capparis Ssp)
Fruit. Journal Of Food Engineering”, 79,1426-1431.
Elsevier, London
Singh, K.K. and Goswami, T.K. (1996). Physical
Properties of Cumin Seed. Journal of Agricultural
23
ÖZLÜ ve GÜNER / JAFAG (2016) 33 (Ek sayı), 10-24
Engineering Research. Volume 64, Issue 2, June 1996,
Pages 93–98.
Sitkei, G. and Bars, S. (1986). Mechanics of agricultural
materials. Budapest: Academia Kiad́.
Sologubik, C. A., Campanone, L. A., Pagano, A. M. and
Gely, M. C. (2013). Effect of Moisture Content on
Some Physical Properties of Barley. Industrial Crops
and Products, 43. 762-767.
www.elsevier.com/locate/indcrop.
Tabatabaeefar, A. (2003). Moisture-Dependent Physical
Properties of Wheat. International Agrophysics, 17.
207-211.
https://cals.arizona.edu/fps/sites/cals.arizona.edu.fps/files/
cotw/Canola.pdf. Accessed to web: 16.03.2016. 15.04
https://en.wikipedia.org/wiki/Spheroid. Accessed to web:
16.03.2016.
24

Thank you for copying data from http://www.arastirmax.com