You are here

Zinav Gölünün Sıcaklık, Seki Derinliği ve Klorofil-a Dağılımının Landsat-7 ETM+ Görüntüsü Kullanılarak Modellenmesi ve Haritalanması

Modeling and Mapping Temperature, Secchi Depth, and Chlorophyll-a Distributions of Zinav Lake by Using GIS and Landsat-7 ETM+ Imagery

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.13002/jafag1050
Abstract (2. Language): 
Temperature, secchi depth, and chlorophyll-a (in relation to secchi depth) of Zinav Lake in Turkey were modeled and mapped by using Geographic Information Systems (GIS) and Remote Sensing (RS). Temperature (oC), secchi depth (m), and chlorophyll-a (mg/l) field data were collected from geo-referenced 5 stations on the lake between September- 2011 and October-2012 in monthly basis. Secchi depth was measured by Hidrobios brand secchi disc with 25 cm diameter. A multi-measuring device (YSI-556MPS) was utilized to determine temperature values. Chlorophyll-a was measured by using Helios-α model UV-Vis spectrophotometer and monochromatic method. Utilizing geo-referenced field data and the digital number (DN) values of thermal (6.1) band of Landsat-7 ETM+ image (date: 27 April 2012 and pat/row: 175/32), temperature raster map of Zinav Lake was created. Relationships between secchi depth and band1/band3 values of Landsat-7 ETM+ image, and between secchi depth and chlorophyll-a were modeled by curve fit analysis. Running the produced models in GIS, secchi depth, temperature and chlorophyll-a raster maps of Zinav Lake were generated. The results showed that the lake has anoxic conditions and it exhibits eutrophic characters.
Abstract (Original Language): 
Türkiye’deki Zinav Gölünün sıcaklık, seki derinliği ve klorofil-a içerikleri Coğrafi Bilgi Sistemleri (CBS) ve Uzaktan Algılama (UA) ile modellenmiş ve haritalanmıştır. Sıcaklık (oC), seki derinliği (m) ve klorofil-1 (mg/l) alan verileri Eylül 2011 ve Ekim 2012 tarihleri arasında göl üzerinden koordinatlı bir şekilde 5 istasyondan toplanmıştır. Seki derinliği 25 cm çapındaki Hidrobios marka seki diski ile ölçülmüştür. Sıcaklık belirlemesinde çoklu ölçüm cihazı (YSI-556MPS) kullanılmıştır. Helios- α model UV-Vis spektrofotometresi ve monokromatik metodla klorofil-a içerikleri hesaplanmıştır. Koordinatlı alan verileri ve Landsat- 7 ETM+ görüntüsünün (Tarih: 27 Nisan 2012, Satır/Sıra: 175/32) termal bandının (6.1) sayısal numaraları kullanılarak Zinav Gölünün sıcaklık raster haritaları oluşturulmuştur. Seki derinliği ve Landsat 7 ETM+ görüntüsünün band1/band3 değerleri arasındaki ve seki derinliği ile klorofil-a değerleri arasındaki ilişki uygun eğri analiz metodu ile modellenmiştir. Üretilen modelin CBS’ de çalıştırılması ile Zinav Gölünün seki derinliği, sıcaklık ve klorofil-a içeriklerini ortaya koyan raster haritalar üretilmiştir. Sonuçlar gölün anoksik durumda olduğunu ve ötrofik karakter sergilediğini göstermiştir.
55
60

REFERENCES

References: 

Abdullah K, MatJafri MZ, Din ZB, Mahamod Y, and Rainis R (2002). Remote sensing of total suspended solids in coastal waters of Penang, Malaysia. Asian Journal of Geoinformatics, 2(2): 53–58.
Allee RJ and Johnson JE (1999). Use of satellite imagery to estimate surface chlorophyll-a and Secchi disc depth of Bull Shoals, Arkansas, USA. International Journal of Remote Sensing, 20: 1057-1072.
Baban SM (1993). Detecting water quality parameters in the Norfolk Broads, U. K., using Landsat imagery. International Journal of Remote Sensing, 14: 1247-1267.
Burns, N.M. Rockwell, D.C. Bertram, P.E. Dolan, D.M. and Ciborowski, J.J.H. (2005) Trends in temperature, secchi depth, and dissolved oxygen depletion rates in the Central Basin of Lake Erie, 1983–2002. Journal of Great Lakes Research, 31(Supplement 2): 35-49.
Bustillos LV (2012). Gap Fill for Landsat-7 Images – A correction of SLC – off.
Coll C, Galve JM, Sánchez JM and Caselles V (2010). Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing 48(1): 547-555. DOI: 10.1109/TGRS.2009.2024934.
Dekker AG and Peters SWM (1993). The use of Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14: 799−821.
59
DOĞAN et al. / JAFAG (2016) 33 (3), 55-60
Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993). Assessing water quality with submersed aquatic vegetation. Bioscience, 43(2), 89-94.
Doxaran D, Froidefond JM, Lavender S and Castaing P (2002). Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Environment, 81: 149-161.
Dukes JS and Mooney HA (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 4: 135-139.
Ekstrand S (1992). Landsat TM based quantification of chlorophyll-a during algae blooms in coastal waters. International Journal of Remote Sensing, 13: 1913−1926.
ERDAS (2003). Erdas Field Guide, Seventh Edition. Leica Geosystems, GIS and Mapping LLC, Atlanta Georgia: pp. 1-672.
ESRI (2005). ArcGIS 9, what is in ArcGIS 9.1. Environmental Systems Research Institute, Redlands California: 1-123.
Ever RF and Eichhorn SE (2005). Biology of Plants (7th ed.). W.H. Freeman. pp. 119-127. ISBN 0: 0-7167-1007-2.
Giardino C, Pepe M, Brivio PA, Ghezzi P, Zilioli E (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Science of the Total Environment, 268(1-3), 19-29.
Gleick, PH (1998). The human right to water. Water Policy, 1(5), 487-503.
Harrington JA and Schiebe FR (1992). Remote sensing of Lake Chicot, Arkansas: monitoring suspended sediments, turbidity, and secchi depth with Landsat MSS data. Remote Sensing of Environment, 39: 15-27.
Jackson DA, Peres-Neto PR and Olden JD (2001). What controls who is where in freshwater fish communities – the roles of biotic, abiyotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58: 157-170.
Mayo M, Gitelson A and Ben-Avram Z (1995). Chlorophyll distribution in Lake Kinneret determined Landsat Thematic Mapper data. International Journal of Remote Sensing, 16(1): 175-182.
Moran MS, Bryant R, Thome K, Ni W, Nouvellon Y, Gonzalez-Dugo MP, Qi J and Clarke TR (2001). A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sensing of Environment, 78: 71-82.
Olmanson LG, Kloiber SM, Bauer ME and Brezonik PL (2001). Image Processing Protocol for Regional Assessments of Lake Water Quality. University of Minnesota, Water Resources Center and Remote Sensing Laboratory, Public Report Series: 14, pp. 327–336.
Poff NL and Allan JD (1995). Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76: 606-627.
Preisendorfer RW (1986). Secchi disk science: Visual optics of natural waters. Limnology and Oceanography, 31(5), 909-926.
Ritchie CJ, Cooper CM and Schiebe FR (1990). The relationship of MSS and TM digital data with suspended sediment, chlorophyll and temperature in Moon Lake, Mississippi. Remote Sensing of environment, 33(2): 137-148.
Simberloff D. (2000). Global climate change and introduced species in United States forests. The Science of the Total Environment, 262: 253-261.
SPSS (2007). SPSS 16.0 for Windows. SPSS Inc.: Chicago.
Zhang Y, Pulliainen J, Koponen S and Hallikainen M (2002). Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment, 81(2-3): 327-336.

Thank you for copying data from http://www.arastirmax.com