You are here

Seçilmiş Fiziksel Özellikleriyle Erik Meyvesinin Kütlesinin Matematiksel Modeller ile Tahmin Edilmesi

Mathematical Models for Estimating the Mass of Plum Fruit by Selected Physical Properties

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.13002/jafag4304
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Dimensional, optical properties and volume of agricultural products are the most important parameters in the design of postharvest equipment. In this study mass of plum fruit was estimated with using selected physical properties in linear and non-linear models. The result showed that the selected properties which were determined in this research such as length, width, thickness, geometric mean diameter, sphericity, mass, volume, projected areas and surface area values of Santa Rosa variety were significantly (p < 0.01) greater than for Can variety except for fruit density. For the practise applications, for estimating the mass of plum fruit, the thickness for Can and width for Santa Rosa can be used. The models based on projected are M 0.026PA 5.247 1 , R2=0.934, RMSE=0.891 for Can variety, 0.046 24.083 3 M PA , R2=0.961, RMSE=1.300 for Santa Rosa variety had highest R2 among the others, can be used. In third classification, the best model was obtained on the basis of the oblate spheroid volume as = . os M V , R2=0.981, RMSE=0.507 for Can variety and 0.937 os M 1.438V , R2=0.959, RMSE=1.326 for Santa Rose variety.
Abstract (Original Language): 
Tarımsal ürünlerin boyutları, optik özellikleri ve hacimleri hasat sonrası ekipmanlarının tasarımlarında en önemli parametrelerdir. Bu çalışmada erik meyvesinin kütlesi, seçilmiş fiziksel özellikleri kullanılarak doğrusal ve doğrusal olmayan modellerle tahmin edilmiştir. Elde edilen sonuçlara göre; bu çalışmada belirlenmiş uzunluk, genişlik, kalınlık geometric ortalama çap, küresellik, kütle, hacim, projeksiyon alanı ve yüzey alanı gibi seçilmiş özelliklere ait değerler meyve yoğunluğu hariç Can çeşidine göre Santa Rosa çeşidinde daha yüksek bulunmuştur (p<0.01). Pratik uygulamalarda her iki çeşit içinde kalınlık değeri meyve kütlesinin tahmin edilmesi için kullanılabilir. Projeksiyon alanlarına göre diğerleri arasında en yüksek R2 değerine sahip olan modeller; Can çeşidi için M 0.026PA 5.247 1 R2=0.934, RMSE=0.891, Santa Rosa çeşidi için M 0.046PA 24.083 3 R2=0.961, RMSE=1.300 olarak bulunmuştur. Oblate sferoid hacim değerlerine göre belirlenen en iyi model Can çeşidi için, = . os M V R2=0.981, RMSE=0.507, Santa Rosa çeşidi için ise, 0.937 os M 1.438V R2=0.959, RMSE=1.326 dir.
83
91

REFERENCES

References: 

Altuntas E, Yaldiz M (2016). Physical, mechanical and
chemical properties of plums (cv. Santa Rosa) affected
by aminoethoxyvinylglycine applications. African
Journal of Traditional, Complementary Alternative
Medicines, 13:128-133.
Berberoglu E, Altuntas E, Dulger E (2014). Development
of adequate mathematical models to predict the mass
of potato varieties from their some physical attributes.
Journal of Agricultural Faculty of Gaziosmanpasa
University (JAFAG), 31: 1-11.
Chakespari GA, Rajabipour A and Mobli H (2010). Mass
modeling of two apple varieties by geometrical
attributes. Australian Journal of Agricultural
Engineering 1: 112-118.
Çalışır S, Hacıseferoğulları H, Özcan M and Arslan D
(2005). Some nutritional and technological properties
of wild plum (Prunus spp.) fruits in Turkey. Journal of
Food Engineering 66: 233–237
Ertekin C, Gozlekci S, Kabas O, Sonmez S and Akinci I
(2006). Some physical, pomological and nutritional
properties of two plum (Prunus domestica L.)
cultivars. Journal of Food Engineering 75: 508–514
FAO (2017). FAO statistics data base on the world wide
web. http://faostat.fao.org. (Accessed to web:
15.02.2017)
Ghabel R, Rajabipour A, Ghasemi-Varnamkhasti M and
Oveisi M (2010). Modeling the mass of Iran export
onion (Allium cepa L.) varieties using some physical
characteristics. Research in Agricultural Engineering
56: 33-40.
Hassan-Beygi S R, Ghanbarian D and Farahmand M
(2010). Prediction of saffron crocus corn mass by
geometrical attributes. Scientia Horticulturae 124:
109–115.
Jahromi MK, Jafari A, Rafiee S, Mirasheh R and
Mohtasebi SS (2008). Mass modeling of date fruit (cv.
Zahedi) with some physical characteristics. American-
Eurasian Journal of Agricultural & Environmental
Sciences 3: 127-131.
Khanali M, Ghasemi Varnamkhasti M, Tabatabaeefar A
and Mobli H (2007). Mass and volume modelling of
tangerine (Citrus reticulate) fruit with some physical
attributes. International Agrophysics 21: 329–334.
Kheiralipour K, Tabatabaeefar A, Mobli H, Rafiee S,
Rajabipour Jafari A and Mirzae A E (2010). Modeling
of dropping time of kiwi fruit in water. International
Journal of Food Properties 13: 1315-1322.
Khoshnam F, Tabatabaeefar A, Ghasemi Varnamkhasti M
and Borghei A (2007). Mass modeling of pomegranate
(Punica granatum L.) fruit with some physical
characteristics. Scientia Horticulturae 114: 21–26
Lorestani AN and Tabatabaeefar A (2006). Modeling the
mass of kiwi fruit by geometrical attributes.
International Agrophysics 20: 135–139.
Mohsenin NN (1986). Physical Properties of Plant and
Animal Materials. Gordon and Breach Science
Publishers, New York
Naderi-Boldaji M, Fattahi R, Ghasemi Varnamkhasti M,
Tabatabaeefar A and Jannatizadeh A (2008). Models
for predicting the mass of apricot fruits by geometrical
attributes (cv. Shams Nakhjavan, and Jahangiri).
Scientia Horticulturae 118: 293–298.
Omid M, Khojastehnazhand M and Tabatabaeefar A
(2010). Estimating volume and mass of citrus fruits by
image processing technique. Journal of Food
Engineering 10: 315–321.
Rashidi M and Seyfi K (2008). Modeling of kiwi fruit
mass based on outer dimensions and projected areas.
American-Eurasian Journal of Agricultural and
Environmental Sciences 3: 26-29.
Seyedabadi E, Khojastehpourb M, Sadrniab H and
Saiedirad M H 2011. Mass modeling of cantaloupe
based on geometric attributes: A case study for Tile
Magasi and Tile Shahri. Scientia Horticulturae 130:
54-59.
Shahi-Gharahlar A, Yavari A R and Khanali M (2009).
Mass and volume modeling of loquat (Eriobotrya
japonica Lindl.) fruit based on physical characteristics.
90
SARAÇOĞLU / JAFAG (2017) 34 (3), 83-91
Journal of Fruit and Ornamental Plant Research 17:
175-189.
Son L (2010). Determination on quality characteristics of
some important Japanese plum (Prunus salicina Lindl.)
cultivars grown in Mersin-Turkey. African Journal of
Agricultural Research 5: 1144–1146.
Spreer W and Müller J (2011). Estimating the mass of
mango fruit (Mangifera indica, cv. Chok Anan) from
its geometric dimensions by optical measurement.
Computers and Electronics in Agriculture 75: 125-
131.
Tabatabaeefar A and Rajabipour A (2005). Modeling the
mass of apples by geometrical attributes. Scientia
Horticulturae 105: 373–382.
Taheri-Garavand, A and Nassiri A (2010). Study on some
morphological and physical characteristics of sweet
lemon used in mass models. International Journal of
Environmental Sciences 1: 580-590.
TUIK, 2017. TUIK statistics database on the world wide
web. www.tuik.gov.tr/PreTablo.do?alt_id=1001.
(Accessed to web: 05.05.2017)

Thank you for copying data from http://www.arastirmax.com