You are here

Proantosiyanidinin nitrojen mustarda maruz bırakılmış künt travma oluşturulmuş akciğerlerdeki etkisi (Gerçek terör saldırı simülasyonu)

Influence of proanthocyanidin on blunt traumatized lungs after nitrogen mustard exposure (real terror attack simulation)

Journal Name:

Publication Year:

Abstract (2. Language): 
In our study, the deconstructive effect of nitrogen mustard on the lung exposed to blunt thorax trauma and the role of proanthocyanidine in preventing this scene were investigated. The rats were separated into four groups by the simple random sampling method and each group contained 15 rats. In all the groups cases were followed up for three days, and sacrificed after the follow up period. Samplings from the tissue were carried out for histopathological and biochemical parameter measurements [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and malondialdehyde (MDA)], and recorded. In the control group nothing was administered. In the second (proanthocyanidine) group proanthocyanidine was administered to the subjects during the follow up period. In the third group nitrogen mustard following blunt thorax trauma application before the 3-days follow up period was administered. In the fourth treatment group nitrogen mustard following blunt thorax trauma application before the 3-days follow up period was performed with proanthocyanidine administration 8 hours before the blunt thorax trauma and nitrogen mustard application. Proanthocyanidine treatment continued during the 3 days of follow up. Alveolar capillary damage, elevated leukocyte infiltration at alveolar area and fibrosis were found in the histologic investigation of the third group. Histological findings of the proanthocyanidine and treatment groups were similar to those of the control group (p>0.05). Exposure to nitrogen mustard gas caused an elevation in MDA levels and decrease in the GPx and SOD activities (p<0.05). MDA levels, GPx and SOD activities were the same in the lung tissues of the proanthocyanidine and control groups (p>0.05). In the treatment group, decrease in the MDA levels and increase in the CAT and GPx activities were observed (p<0.05). Nitrogen mustard administered with blunt thorax trauma caused oxidative stress and tissue damage, and proanthocyanidine improved the scene in this study.
Abstract (Original Language): 
Çalışmamızda nitrojen mustardın künt toraks travmasına maruz kalmış akciğerde yıkıcı etkisi ve proantosiyanidinin bu tabloyu önlemedeki rolü araştırıldı. Ratlar basit randomizasyon yöntemiyle her biri 15 rat içeren 4 gruba ayrıldı. Tüm gruplarda denekler üç gün takip edildi ve takip süresinden sonra sakrifiye edildi. Dokudan histopatolojik ve biyokimyasal parametre ölçümleri için [süperoksid dismutaz (SOD), glutatyon peroksidaz (GPx), katalaz (CAT), malondialdehid (MDA)] örnekleme yapıldı ve kaydedildi. Kontrol grubunda hiçbir tedavi uygulanmadı. İkinci (proantosiyanidin) grubunda deneklere üç günlük takip boyunca proantosiyanidin verildi. Üçüncü grupta denekler üç günlük takip süresinin öncesinde künt toraks travması ve ardından nitrojen mustarda maruz bırakıldı. Dördüncü tedavi grubunda deneklere künt toraks travması ve nitrojen mustard uygulanmadan 8 saat önce proantosiyanidin tedavisine başlandı. Üç günlük takip süresince proantosiyanidin tedavisine devam edildi. Üçüncü grubun histolojik incelemesinde alveolar kapiller hasar, alveolar alanda artmış lökosit infiltrasyonu ve fibrozis saptandı. Proantosiyanidin ve tedavi gruplarının histolojik bulguları kontrol grubuna benzerdi (p>0.05). Çalışmamızda nitrojen mustarda maruziyet akciğer dokusunda MDA düzeylerinde artmaya, GPx ve SOD aktivitelerinde azalmaya sebep oldu (p<0.05). MDA düzeyi, GPx ve SOD aktiviteleri proantosiyanidin akciğer dokusu ile kontrol grubunda aynıydı (p>0.05). Tedavi grubunda MDA düzeylerinde azalma, CAT ve GPx aktivitelerinde ise artma gözlendi (p<0.05). Çalışmamızda künt toraks travmasıyla birlikte akciğere uygulanan nitrojen mustard, oksidatif strese ve doku harabiyetine yol açmıştır ve proantosiyanidin tedavisi bu tabloyu azaltmada etkili olmuştur.
39-44

REFERENCES

References: 

1. Yaren H, Mollaoglu H, Kurt B, et al. Lung toxicity of
NM may be mediated by nitric oxide and peroxynitrite
in rats. Res Vet Sci 2007; 83: 116-122.
2. Dacre JC, Goldman M. Toxicology and pharmacology of
the chemical warfare agent sulfur mustard. Pharmacol
Rev 1996; 48: 289-326.
3. Ucar M, Korkmaz A, Reiter RJ, et al. Melatonin alleviates
lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol Lett 2007; 173: 124-131.
4. Elsayed NM, Omaye ST. Biochemical changes in mouse
lung after subcutaneous injection of the SM2-chloroethyl 4-chlorobutyl sulfide. Toxicology 2004; 199:
195-206.
5. Graham JS, Chilcott RP, Rice P, et al. Wound healing of
cutaneous SM injuries. J Burns Wounds 2005; 4: e1.
6. Sidell FR, Urbanetti JS, Smith WJ, Hurst CG. Vesicants.
In: Medical Aspects Of Chemical And Biological Warfare.
Sidell FR, Takafuji ET, Franz DR (eds). Department of the
Army, Office of The Surgeon General, Borden Institute.
Washington, 1997: 197-228.
7. Chatterjee D, Mukherjee S, Smith MG, Das SK. Signal
transduction events in lung injury induced by 2-chloroethyl ethyl sulfide, a mustard analog. J Biochem Mol
Toxicol 2003; 17: 114-121.
8. Elsayed NM, Omaye ST. Biochemical changes in mouse
lung after subcutaneous injection of the sulfur mustard
2-chloroethyl 4-chlorobutyl sulfide. Toxicology 2004;
199: 195-206.
9. Tokuda Y, Kikuchi M, Takahashi O, Stein GH. Prehospital
management of sarin nerve gas terrorism in urban settings: 10 years of progress after the Tokyo subway sarin
attack. Resuscitation 2006; 68: 193-202.
10. Roy SS, Mukherjee S, Kabir S, Rajaratnam V, Smith M,
Das SL. Inhibition of cholinephsphotransferase activity
in lung injury induced by 2-chloroethyl ethyl sulfide,
a mustard analog. J Biochem Mol Toxicol 2005; 19:
289-297.
11. Li WG, Zhang XY, Wu YJ, Tian X. Anti-inflammatory
effect and mechanism of proanthocyanidins from grape
seeds. Acta Pharmacol Sin 2001; 22: 1117-1120.
12. Sano T, Oda E, Yamashita T, et al. Anti-thrombotic effect of proanthocyanidin, a purified ingredient of grape
seed. Thromb Res 2005; 115: 115-121.
13. Yucel O, Genc O, Onguru O, et al. Proanthocyanidine
alleviates lung damage induced by nitrogen mustard.
Gulhane Med J 2008; 50: 267-272.
14. Yucel O, Kunak ZI, Macit E, et al. Protective efficacy of
taurine against pulmonary edema progression: experimental study. J Cardiothorac Surg 2008; 28: 57.
15. Yücel O, Genç O, Özcan A ve ark. Rat akciğerlerinde
künt torasik travma modeli: deneysel bir çalışma.
Gülhane Tıp Dergisi 2008; 50: 249-252.
16. Geraci MJ. Mustard gas: imminent danger or eminent
threat? Ann Pharmacother 2008; 42: 237-246.
17. McClintock SD, Hoesel LM, Das SK, et al. Attenuation
of half SM gas-induced acute lung injury in rats. J Appl
Toxicol 2006; 26: 126-131.
18. Bagchi D, Sen CK, Ray SD, et al. Molecular mechanisms
of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res 2003; 523-524: 87-97.
19. Christop PH, John DR, Christian ME, Harald T. Appraisal
of early evaluation of blunt chest trauma: development
of a standardized scoring system for initial clinical decision making. J Trauma 2000; 49: 496-504.
20. Regel G, Lobenhoffer P, Grotz M, Pape HC, Lehmann U,
Tscherne H. ARDS after pulmonary contusion: accurate
measurement of contusion volume identifies high-risk
patients. J Trauma 1995; 38: 70-78.
21. Kelly ME, Miller PR, Greenhaw JJ, Fabian TC, Proctor
KG. Novel resuscitation strategy for pulmonary contusion after severe chest trauma. J Trauma 2003; 55:
94-105.
22. Wanek S, Mayberry JC. Blunt thoracic trauma: flail
chest, pulmonary contusion, and blast injury. Crit Care
Clin 2004; 20: 71-81.
23. Wang ND, Stevens MH, Doty BD, Hammond EH. Blunt
chest trauma: an experimental model for heart and
lung contusion. J Trauma 2003; 54: 744-748.
24. Knoferl MW, Liener UC, Seitz DH, et al. Cardiopulmonary
histological and inflammatory alterations after lung
contusion in a novel mouse model of blunt chest trauma. Shock 2003; 19: 519-525.
25. Irwin RJ, Lerner MR, Bealer JF, Brackett DJ, Tuggle DW.
Cardiopulmonary physiology of primary blast injury. J
Trauma 1997; 43: 650-655.
26. Kenneth G, Proctor KG. Blood substitutes and experimental models of trauma. J Trauma 2003; 54: 106-109.
27. Anderson DR, Byers SL, Vesely KR. Treatment of SM
(HD)-induced lung injury. J Appl Toxicol 2000; 20:
129-132.
28. Koleckar V, Brojerova E, Opletal L, Jun D, Kuca K.
Antioxidants, free radicals, mechanism of action and
application in the therapy of the sulfur mustard caused
injury. Ceska Slov Farm 2007; 56: 73-76.
29. Maxwell RA, Gibson JB, Fabian TC, Proctor KG. Effects
of a novel antioxidant during resuscitation from severe
blunt chest trauma. Shock 2000; 14: 646-651.
30. Sharma SD, Katiyar SK. Dietary grape-seed proanthocyanidin inhibition of ultraviolet B-induced immune suppression is associated with induction of IL-12.
Carcinogenesis 2006; 27: 95-102.
31. Roychowdhury S, Wolf G, Keilhoff G, Bagchi D, Horn
T. Protection of primary glial cells by grape seed proanthocyanidin extract against nitrosative/oxidative stress.
Nitric Oxide 2001; 5: 137-149.
32. Pataki T, Bak I, Kovacs P, Bagachi D, Das DK, Tosaki
A. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat
hearts. Am J Clin Nutr 2002; 75: 894-899.
33. Ray SD, Kumar MA, Bagchi D. A novel proanthocyanidin IH636 grape seed extract increases in vivo BclXL expression and prevents acetaminophen-induced
programmed and unprogrammed cell death in mouse
liver. Arch Biochem Biophys 1999; 369: 42-58.

Thank you for copying data from http://www.arastirmax.com