You are here

İki ve üç boyutlu sefalometrik ölçümler arasındaki farklılıkların değerlendirilmesi

Evaluation of differences between two and three dimensional cephalometric measurements

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this research was to compare the three dimensional (3D) craniofacial measurements with conventional two dimensional cephalometric measurements in patients with skeletal Class III malocclusion. The study was carried out on lateral cephalograms and axial computed tomography (CT) images of 44 patients. The 3D images were obtained and measured with Mimics 12.01 image processing software. Anatomic landmarks were first designated on the 3D surface model, and their positions were verified on sagittal, coronal, and axial planes. 14 angular and 18 linear measurements were performed on 3D images, and conventional cephalograms. After the evaluation of the results it was determined that the conventional two dimensional cephalometry and computer aided three dimensional cephalometry were close in depicting angular relations of structures, but they differed in the accuracy of linear measurements, except Nperp-A, Nperp-Pog, Overjet, Overbite, L1-NB, UL-E and LL-E.
Abstract (Original Language): 
Bu araştırmanın amacı, iskeletsel Sınıf III maloklüzyonu olan hastalarda üç boyutlu (3B) kraniyofasiyal ölçümleri, geleneksel iki boyutlu sefalometrik öl- çümlerle karşılaştırmaktır. Çalışma 44 hastanın lateral sefalogramları ve aksiyel bilgisayarlı tomografi (BT) görüntüleri üzerinde yürütülmüştür. 3B gö- rüntülerin oluşturulması ve ölçülmesi, Mimics 12.01 görüntü işleme yazılımı ile yapılmıştır. Anatomik yapılar önce 3B yüzey modeli üzerinde belirlenmiş ve pozisyonları sagital, koronal, ve aksiyal düzlemlerde doğrulanmıştır. 3B görüntüler ve geleneksel sefalometriler üzerinde 14 açısal ve 18 doğrusal ölçüm yapılmıştır. Sonuçların değerlendirilmesinde, yapıların açısal ilişkilerini tanımlamada geleneksel iki boyutlu sefalometri ve bilgisayar destekli üç boyutlu sefalometrinin birbirine yakın olduğu, ancak Nperp-A, Nperp-Pog, Overjet, Overbite, L1-NB, UL-E ve LL-E haricindeki doğrusal ölçümlerin farklılık gösterdiği tespit edilmiştir.
43-49

REFERENCES

References: 

1. Quintero JC, Trosien A, Hatcher D, Kapila S. Craniofacial
imaging in orthodontics: historical perspective, current
status, and future developments. Angle Orthod 1999;
69: 491-506.
2. Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications
of 3D imaging in orthodontics: part I. J Orthod 2004;
31: 62-70.
3. Bergersen EO. The directions of facial growth from
infancy to adulthood. Angle Orthod 1966; 36: 18-43.
4. Mah J, Hatcher D. Three-dimensional craniofacial
imaging. Am J Orthod Dentofacial Orthop 2004; 126:
308-309.
5. Adams GL, Gansky SA, Miller AJ, Harrell WE Jr, Hatcher
DC. Comparison between traditional 2-dimensional
cephalometry and a 3-dimensional approach on human
dry skulls. Am J Orthod Dentofacial Orthop 2004; 126:
397-409.
6. Han UK, Vig KW, Weintraub JA, Vig PS, Kowalski CJ.
Consistency of orthodontic treatment decisions relative
to diagnostic records. Am J Orthod Dentofacial Orthop
1991; 100: 212-219.
7. Kitaura H, Yonetsu K, Kitamori H, Kobayashi K,
Nakamura T. Standardization of 3-D CT measurements
for length and angles by matrix transformation in the
3-D coordinate system. Cleft Palate Craniofac J 2000; 37:
349-356.
8. Miller PA, Savara BS, Singh IJ. Analysis of errors in
cephalometric measurement of three-dimensional
distances on the maxilla. Angle Orthod 1966; 36:
169-175.
9. Pae EK. Cephalometry needs innovation, not renovation.
Angle Orthod 1997; 67: 395-396.
10. Enciso R, Memon A, Fidaleo DA, Neumann U, Mah J.
The virtual craniofacial patient: 3D jaw modeling and
animation. Stud Health Technol Inform 2003; 94: 65-71.
11. Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S,
Kocadereli I. Use of three-dimensional medical modeling
methods for precise planning of orthognathic surgery. J
Craniofac Surg 2007; 18: 740-747.
12. Metzger MC, Hohlweg-Majert B, Schwarz U, Teschner
M, Hammer B, Schmelzeisen R. Manufacturing splints
for orthognathic surgery using a three-dimensional
printer. Oral Surg Oral Med Oral Pathol Oral Radiol
Endod 2008; 105: e1-7.
13. Ortakoglu K, Karacay S, Sencimen M, Akin E, Ozyigit
AH, Bengi O. Distraction osteogenesis in a severe
mandibular deficiency. Head Face Med 2007; 20: 3-7.
14. Sinn DP, Cillo JE Jr, Miles BA. Stereolithography for
craniofacial surgery. J Craniofac Surg 2006; 17: 869-875.
15. Park SH, Yu HS, Kim KD, Lee KJ, Baik HS. A proposal
for a new analysis of craniofacial morphology by
3-dimensional computed tomography. Am J Orthod
Dentofacial Orthop 2006; 129: e23-34.
16. Lopes PM, Moreira CR, Perrella A, Antunes JL, Cavalcanti
MG. 3-D volume rendering maxillofacial analysis of
angular measurements by multislice CT. Oral Surg Oral
Med Oral Pathol Oral Radiol Endod 2008; 105: 224-230.
17. Swennen GR, Schutyser F. Three-dimensional
cephalometry: spiral multi-slice vs cone-beam computed
tomography. Am J Orthod Dentofacial Orthop 2006;
130: 410-416.
18. Chen YJ, Chen SK, Huang HW, Yao CC, Chang HF.
Reliability of landmark identification in cephalometric
radiography acquired by a storage phosphor imaging
system. Dentomaxillofac Radiol 2004; 33: 301-306.
19. Bruntz LQ, Palomo JM, Baden S, Hans MG. A comparison
of scanned lateral cephalograms with corresponding
original radiographs. Am J Orthod Dentofacial Orthop
2006; 130: 340-348.
20. Togashi K, Kitaura H, Yonetsu K, Yoshida N, Nakamura
T. Three-dimensional cephalometry using helical
computer tomography: measurement error caused by
head inclination. Angle Orthod 2002; 72: 513-520.
21. Richtsmeier JT, Paik CH, Elfert PC, Cole TM 3rd,
Dahlman HR. Precision, repeatability, and validation of
the localization of cranial landmarks using computed
tomography scans. Cleft Palate Craniofac J 1995; 32:
217-227.
22. Nagashima M, Inoue K, Sasaki T, Miyasaka K,
Matsumura G, Kodama G. Three-dimensional imaging
and osteometry of adult human skulls using helical
computed tomography. Surg Radiol Anat 1998; 20:
291-297.
23. Kusnoto B, Evans CA, BeGole EA, de Rijk W. Assessment
of 3-dimensional computer-generated cephalometric
measurements. Am J Orthod Dentofacial Orthop 1999;
116: 390-399.
24. Cavalcanti MG, Haller JW, Vannier MW. Threedimensional computed tomography landmark
measurement in craniofacial surgical planning:
experimental validation in vitro. J Oral Maxillofac Surg
1999; 57: 690-694.
25. Chidiac JJ, Shofer FS, Al-Kutoub A, Laster LL, Ghafari
J. Comparison of CT scanograms and cephalometric
radiographs in craniofacial imaging. Orthod Craniofac
Res 2002; 5: 104-113.
26. Hildebolt CF, Vannier MW, Knapp RH. Validation study
of skull three-dimensional computerized tomography
measurements. Am J Phys Anthropol 1990; 82: 283-294.
27. Ahlqvist J, Eliasson S, Welander U. The effect of projection
errors on cephalometric length measurements. Eur J
Orthod 1986; 8: 141-148.
28. Malkoc S, Sari Z, Usumez S, Koyuturk AE. The effect
of head rotation on cephalometric radiographs. Eur J
Orthod 2005; 27: 315-321.
29. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S.
Comparison of the reliability of craniofacial anatomic
landmarks based on cephalometric radiographs and
three-dimensional CT scans. Cleft Palate Craniofac J
1997; 34: 111-116.
30. Kumar V, Ludlow J, Soares Cevidanes LH, Mol A. In
vivo comparison of conventional and cone beam CT
synthesized cephalograms. Angle Orthod 2008; 78:
873-879.
31. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira
AM, Farman AG. Linear accuracy and reliability of cone
beam CT derived 3-dimensional images constructed
using an orthodontic volumetric rendering program.
Angle Orthod 2008; 78: 387-395.
32. Jamali AA, Deuel C, Perreira A, Salgado CJ, Hunter
JC, Strong EB. Linear and angular measurements of
computer-generated models: Are they accurate, valid,
and reliable? Comput Aided Surg 2007; 2: 278-285.

Thank you for copying data from http://www.arastirmax.com