You are here

DİYABETİK SIÇANLARDA SICAK STRESİ VE KAS ATROFİSİ

HEAT STRESS AND MUSCLE ATROPHY IN DIABETIC RATS

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of this study was to investigate the effects of heat shock protein 72 (HSP72) on muscle atrophy in diabetic rats. Forty-two male Sprague-Dawley rats (Age = 4 weeks; Xbody mass=147±4g) were randomly assigned to one of 5 experimental groups. Four groups were formed to study muscle atrophy: Control (CONT, n=6), Heat Stress (HS, n=6), Diabetic (D, n=12) and Heats Stress-Diabetic (HS-D, n=13). The fifth group, Heat Stress-1 (HS1, n=5), served to determine the degree of HSP72 induction 24 hours following heat stress. HSP72 was induced by placing the rats in a hot water bath. During the bath rats' rectal temperatu¬re was constant at 42°C for 15 minutes. Twenty-four hours after heat stress, a single dose of (125mg kg-1) of streptozotocin was injected intraperitonealy to the rats in HS-D group and D group to induce diabetes. Five days after streptozotocin injection all animals were anest¬hetized, muscle tissues (SOL, EDL) were removed, weighed and analyzed for HSP72 levels. One dimensional electrophoresis and immunoblotting techniques were used to analyze HSP72. Compared to those of non-diabetic groups, blood glucose levels were significantly higher (P<0.05), and both body masses and absolute muscle masses were significantly lo¬wer in diabetic groups (P<0.05). Relative muscle HSP72 levels were higher in all experimen¬tal groups compared with the corresponding control values. There was no significant diffe¬rence in muscle atrophy between HS-D and D groups (P>0.05). Induction of stress proteins was not effective in reducing diabetic muscle atrophy.
Abstract (Original Language): 
Bu çalışmanın amacı, sıcak şoku proteini 72'nin (HSP72) diyabetik sıçanlarda kas atrofi-si üzerine etkisini araştırmaktır. Kırkiki erkek Sprague-Dawley sıçan (Yaş = 4 hafta; Xvücut küt-lesi=147±4g) rastgele yöntemle 5 deney grubuna ayrılmıştır. Gruplardan dördü kas atrofisinin araştırılması için oluşturulan; Kontrol (KONT, n=6), Sıcak Stresi (SS, n=6), Diyabetik (D, n=12) ve Sıcak Stresi-Diyabetik (SS-D, n=13) grupları olup, beşinci grup olan Sıcak Stresi-1 (SS1, n=5) sıcak stresi uygulamasından 24 saat sonra HSP72 indüklenme düzeyinin belirlenmesi amacıyla oluşturulmuştur. HSP72, sıcak su banyosu yöntemi kullanılarak indüklenmiştir. Sı¬cak su banyosu sırasında, hayvanların rektal vücut sıcaklığı 15dk süresince 42°Cde sabit tu¬tulmuştur. Sıcak stresi uygulamasından 24 saat sonra SS-D ve D gruplarındaki hayvanlara tek doz streptozotosin (125mg kg-1) intraperitoneal olarak enjekte edilerek diyabet oluşturul¬muştur. Streptozotosin enjeksiyonundan 5 gün sonra tüm hayvanlara anestezi uygulanarak, soleus (SOL) ve ekstansör digitorum longus kasları izole edilmiş, tartılmış ve HSP72 analizi yapılıncaya kadar -80°C derin dondurucuda saklanmıştır. HSP72 analizinde tek boyutlu po-liakrilamid jel elektroforezi ve immünoblot teknikleri kullanılmıştır. Diyabetik olmayan gruplar¬la karşılaştırıldığında diyabetik grupların kan glikoz düzeyi daha yüksek (P<0.05), vücut küt¬lesi ve mutlak kas kütlesi daha düşük (P<0.05) bulunmuştur. Kas dokularındaki relatif HSP72 düzeyleri tüm deney gruplarında kontrol grubu değerlerinden yüksek bulunmuştur. SS-D ve D grupları arasında kas atrofisi yönünden anlamlı fark bulunmamıştır (P>0.05). Sıcak stresi proteini indüklenmesi diyabetik sıçanlarda kas atrofisinin azaltılmasında etkili bulunmamıştır.
77-94

REFERENCES

References: 

Aragno, M., Mastrocola, R., Catalano, M.G., Brignardello, E., Danni, O. & Boccuz-zi, G. (2004). Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes, 53(4), 1082-8.
Atalay, M., Laaksonen, D., Niskanen, L., Usi-tupa, M., Hanninen, O. & Sen, C.K. (1997). Altered antioxidant enzyme defenses in insulin-dependent diabe¬tic men with increased resting and exercise-induced oxidative stress. Acta Physiol Scand, 161, 195-201.
Atalay, M., Oksala, N.K.J., Laaksonen, D., Khanna, S., Nakao, C., Lappalainen, J,, Roy, S., Hanninen, O. & Sen, C.K. (2004). Exercise training modulates heat shock protein response in di-abetic rats. J Appl Physiol, 97(2), 605-11.
Bellman, K., Wenz, A., Radons, J., Burkart, V., Kleemann, R. & Kolb, H. (1995). Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and strepto-zotocin toxicity in vitro. J Clin Invest, 95(6), 2840-2845.
Bitar, M.S., Farook, T., John, B. & Francis, I.M. 1999. Heat-shock protein 72/73 and impaired wound healing in diabe¬tic and hypercortisolemic states. Sur¬gery, 125(6), 594-601.
Bradford, M. (1976). A refined sensitive met¬hod for the quantification of microg¬ram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem, 72, 248-254.
Chen, H.S., Shan, Y.X., Yang, T.L., Lin, H.D., Chen, J.W., Lin, S.J. & Wang, P.H. (2005). Insulin deficiency downregu-lated heat shock protein 60 and IGF-1 receptor signaling in diabetic myo¬cardium. Diabetes, 54(1), 175-81.
DeFronzo, R.A., Jacot, E., Jequier, E., Ma-eder, E., Wahren, J. & Felber, J.P (1981). The effect of insulin on the disposal of intravenous glucose. Re¬sults from indirect calorimetry and hepatic and femoral venous cathete-rization. Diabetes, 30(12), 1000-1007.
Demirel, H.A., Powers, S.K., Zergeroglu, M.A., Shanely, R.A., Hamilton, K., Co-ombes, J. & Naito, H. (2001). Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfu-sion in the rat. J Appl Physiol, 91(5),
2205-2212.
Fagan, J.M., Satarug, S., Cook, P. & Tischler, M.E. (1987). Rat muscle protein tur-nover and redox state in progressive diabetes. Life Sci, 40, 783-790.
Fink, A.L. (1999). Chaperone-mediated pro¬tein folding. Physiol Rev, 79(2), 425¬449.
Garramone, R.R., Winters, R.M., Das, D.K. & Deckers, P.J. (1994). Reduction of skeletal muscle injury through stress

conditioning using the heat shock response. Plast Reconst Surg, 93,
1242-1247.
Joyex, M., Faure, P., Godin-Ribout, D., Hali¬mi, S., Patel, A., Yellon, D.M., Demen¬ge, P. & Ribout, C. (1999). Heat stress fails to protect myocardium of strep-tozotocin-induced diabetic rats aga¬inst infarction. Cardiovascular Rese¬arch, 43, 939-946.
Kimoto, S., Yamamoto, Y., Yamagami, K., Is-hikawa, Y., Kume, M., Yamamoto, H., Ozaki, N. & Yamaoka, Y. (2000). The augmentative effect of repeated heat shock preconditioning on the pro-duction of heat shock protein 72 and on ischemic tolerance in rat liver tis¬sue. Int J Hyperthermia, 16(3), 247¬261.
Ku, Z., Yang, J., Memon, V. & Thomason, D.B. (1995). Decreased polysomal HSP-70 may slow polypeptide elon¬gation during skeletal muscle at¬rophy. Am J Physiol, 268 (Cell Physi-ol. 37), C1369-C1374.
Lecker, S.H., Solomon, V., Mitch, W.E. & Goldberg, A.L. (1999). Muscle protein breakdown and the critical role of the ubiquitin proteasome pathway in nor-mal and disease states. J Nutrition,
29(1), 227S-237S.
Lepore, D.A., Hurley, J.V., Stewart, A.G., Morrison, W.A. & Anderson, R.L. (2000). Prior heat stress improves survival of ischemia-reperfused ske-letal muscle in vivo. Muscle Nerve,
23, 1847-18555.
Lille, S., Su, C.Y., Schoeller, T., Suchy, H., Lyons, S., Russell, R.C., Neumeister, M. & Lai, C.C. (1999). Induction of he-at-shock protein 72 in rat skeletal muscle does not increase tolerance to ischemia-reperfusion injury. Musc¬le Nerve, 22(3), 390-393.
Locke, M., Tanguay, R. M., Klabunde, R.E. & Ianuzzo, C.D. (1995). Enhanced pos-tischemic myocardial recovery follo¬wing exercise induction of HSP 72.
Am J Physiol, 269, H320-H325.
Locke, M. (1997). The cellular stress respon¬se to exercise: role of stress proteins. Exerc Sci Sports Rev, 25, 105-136.
Marra, G., Cotroneo, P., Pitocco, D., Manto, A., Di Leo, M.A.S., Ruotolo, V., Capu-to, S., Giaardina, B., Ghirlanda, G. & Santini, S.A. (2002). Early increase of oxidative stress and reduced antioxi-dant defenses in patients with un-complicated type 1 diabetes. Diabe¬tes Care, 25, 370-375.
Mitch, W.E., Bailey, J.L., Wang, X., Jurkovitz, C., Newby, D. & Price, S.R. (1999). Evaluation of signals activating ubi-quitin-proteasome proteolysis in a model of muscle wasting. Am J Physiol 276 (Cell Physiol, 45), C1132-
C1138.
Naito, J., Hartung, E., Schramm, E. & Insel-mann, G. (1999). Heat stress produ¬ces an early phase of protection aga¬inst oxidative damage in human muscle. Acta Anaesthesiol Scand,
43, 77-81.
Naito, H., Powers, S.K., Demirel, A.H., Sugi-ura, T., Dodd, S.L. & Aoki, J. (2000).
Heat stress attenuates skeletal musc¬le atrophy in hindlimb-unweighted rats. J Appl Physiol, 88, 359-363.
Oishi, Y., Taniguchi, K. Matsumoto, H. Ishi-hara, A., Ohira, Y. & Roy, R.R. (2002). Muscle type-specific response of
HSP60, HSP72, and HSC73 during
recovery after elevation of muscle

temperature. Am J Physiol, 92(3),
1097-1103.
Ohkuwa, T., Sato, Y. & Naoi, M. (1995). Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life
Sci, 56, 1789-1798.
Peng, J., Jones, G.L. & Watson, K. (2000). Stress proteins as biomarkers of oxi-dative stress: effects of antioxidant supplements. Free Radic Biol Med,
28(11), 1598-606.
Pepato, M.T., Migliorini, R.H., Goldberg, A.L. & Kettelhut, I.C. (1996). Role of diffe¬rent proteolytic pathways in degrada¬tion of muscle protein from strepto-zotocin-diabetic rats. Am J Physiol,
271(34), E340-E347.
Powers, S.K., Demirel, H. A., Vincent, H.K., Coombes, J.S., Naito, H., Hamilton, K.L., Shanely, R.A. & Jessup, J. (1998). Exercise training improves myocardial tolerance to in vivo ische-mia-reperfusion in the rat. Am J
Physiol, 275, R1468-77.
Price, S.R., England, B.K., Bailey, J.L., Wang, X., Jurkovitz, C., England,
B.K., Phillips, L.S. & Mitch, W.E.
(1996). Muscle wasting in insulinope-nic rats results from activation of the ATP-dependent, ubiquitin-proteaso-me proteolytic pathway by a mecha¬nism including gene transcription. J
Clin Invest, 98(8), 1703-1708.
Qi, J.S. Kam K.W.L., Chen, M., Wu, S. & Wong, T.M. (2004). Failure to confer cardioprotection and to increase the expression of heat-shock protein 70 by preconditioning with a _-opioid re-ceptor agonist during ischaemia and reperfusion in streptozotocin-indu-ced diabetic rats. Diabetologia, 47(2),
214-220.
Rakonczay, Z., Takäcs, T., Boros, I. & Lono-vics, J. (2003). Heat shock proteins and the pancreas. J Cell Physiol, 195,
383-391.
Smith, O.L., Wong, C.Y. & Gelfand, R.A. (1989). Skeletal Muscle Proteolysis in RatsWith Acute Streptozotocin-Indu-ced Diabetes. Diabetes, 38(9), 1117¬1122.
Telci, A., Cakatay, U., Salman, S., Satman, I. & Sivas, A. (2000). Oxidative protein damage in early stage type 1 diabetic patients. Diabetes Res Clin Prac, 50,
213-223.
Thomason, D.B. & Booth, F.W. (1990). At¬rophy of the soleus muscle by hind-limb unweighting. Am J Physiol, 68,
1-12.
Thomason, D.B., Biggs, R.B. & Booth, F.W. (1989). Protein metabolism and b-myosin heavy-chain mRNA in unwe-ighted soleus muscle. Am J Physiol Regul Integr Comp Physiol, 257,
R300-R305.
Welch, W.J. (1992). Mammalian stress res-ponse: cell physiology, structu-re/function of stress proteins, and implications for medicine and dise¬ase. Physiol Rev, 72(4), 1063-1081.
Welsh, N., Margulis, B., Borg, L.A., Wiklund, H.J., Saldeen, J., Flodstrom, M., Mel¬lo, M.A., Andersson, A., Pipelleers, D.G. & Hellerstrom, C. (1995). Diffe¬rences in the expression of heat-shock proteins and antioxidant enzy¬mes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med, 1(7), 806¬820.
Yamagishi, N., Nakayama, K. Wakatsuki, T. & Hatayama, T. (2001). Characteristic

changes of stress protein expression in streptozotocin-induced diabetic rats. Life Sci, 69, 2603-9.
Zarzhevsky, N., Menashe, O., Carmeli, E.,
Stein, H. & Reznick, A.Z. (2001).
Capacity for recovery and possib¬le mechanisms in immobilization atrophy of young and old animals.
Ann N Y Acad Sci, 928, 212-25.

Thank you for copying data from http://www.arastirmax.com