You are here



Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Hypoxia is a condition where partial oxygen pressure is low, that is why altitude creates a hypoxic environment. In response to hypoxic stress, mainly hypoxia inducable factor-1 alpha (HIF-1 a) level increases and carbohydrate related genes are activated by HIF-1 a mak¬ing the physiological adaptation to altitude easy. Understanding the effects of hypoxia oncarbohydrate metabolism and exercise performance would be useful in terms of using car¬bohydrates for the people who are exposed to altitude for various reasons (athletes, moun¬taineers, troops and tourists).
Abstract (Original Language): 
Hipoksi, oksijen parsiyel basıncının (PO2) düşük olduğu durumları tanımlar, bu yüzden yükselti hipoksik bir ortam yaratmaktadır. Hipoksik strese cevap olarak, başta hipoksi ile indüklenen faktör-1 alfa (HIF-1a, hypoxia inducable factor-1 alpha) düzeyi artmakta ve kar¬bonhidrat (CHO) metabolizması ile ilgili genleri de aktive ederek hipoksiye fizyolojik adapta¬syonu kolaylaştırmaktadır. Yükseltinin CHO metabolizması ve egzersiz performansı üzerindeki etkilerinin bilinmesi, değişik amaçlarla yükseltide bulunmak zorunda kalan kişilere (sporcular, dağcılar, işçiler, askerler, turistler) CHO'ların kullanımı ile ilgili yararlar sağlaya¬caktır.



Abraini, J.H., Bouqet C., Joulia, F., Nicolas, M. & Kreim, B. (1998). Cognitive perf-romance during a simulated climb of Mount Everest: implications for brain function and central adaptative pro-cesses under chronic hypoxic stress. Eur J Physiol, 436, 553-559.
Ashley, C.D., Kramer, M.L. & Bishop, P. (2000). Estrogen and substrate meta¬bolism. A review of contradictory re¬search. Sports Med, 29, 221-227.
Askew, E.W. (1995). Environmental and physical stress and nutrient require-ments. Am J Clin Nutr, 61, 631-637.
Beidleman, B.A., Rock, P.B. & Muza, S.R. (2002). Substrate oxidation is altered in women during exercise upon acute altitude exposure. Med Sci Sports
Exerc, 34(3), 430-437.
Boning, D. (1997). Altitude and hypoxia tra-ining a short review. Int J Sports Med,
18(8), 565-70.
Boyer, S.J.& Blume, F.D. (1984). Weight loss and changes in body composition at high altitude. J Appl Physiol, 57(5), 1580-5.
Braun, B., Mawson, J.T., Muza, S.R., Domi-nick, S.B., Brooks, G.A., Horning, M.A., Rock, P.B., Moore, L.G., Maz-zeo, R.S., Ezeji-Okoye, S.C. & Butter¬field, G.E. (2000). Women at high alti¬tude: Carbohydrate utilization during exercise at 4300 m. J Appl Physiol,
88, 246-256. Brooks, G.A., Butterfield, G.E., Wolfe, R.R, Groves, B.M., Mazzeo, R.S., Sutton
J.R.,Wolfel, E.E. & Reeves, J.T.
(1991) . Increased dependence on blood glucose after acclimatization to 4300 m. J Appl Physiol, 70(2), 919¬927.
Brooks, G.A. & Mercier, J. (1994). Balance of carbohydrate and lipid utilization du-ring exercise: The crossover concept. J Appl Physiol, 76, 2253-2261.
Butterfield, G.E., Gates, J., Fleming, S., Bro¬oks, G.A., Sutton, J.R. & Reeves, J.T.
(1992) . Increased energy intake mini-mizes weight loss in man at high alti-tude. J Appl Physiol, 72, 1741.
CMNR (1996). A review of the physiology and nutrition in cold and high-altitude environments. Washington DC: Nati-onal Academy Press.
Consolazio, C.F., Matoush, L.O., Jhonson, H.L., Krzywicki, H.J., Daws, T.A. & Isaac, G.J. (1969). Effects of high car-bohydrate diets on performance and clinical symptomatology after rapid ascent to high altitude. Fed Proc, 28,
Cymerman, A., Reeves, J.T., Sutton, J.R., Rock, P.B., Groves, B.M., Malconian, M.K., Young, P.M., Wagner, P.D. & Houston, C.S. (1989). Operation Eve¬rest II: Maximal oxygen uptake at ext¬reme altitude. J Appl Physiol, 66(5),
Dillard, T.A. (1990). Dietary carbohydrate, al-veolar gas and chronic obstructive pulmonary disease. Ann Int Med,
112(4), 309-310.
Dramise, J.G., Inouye, C.M., Christensen, B.M., Fults, R.D., Canham, J.E. & Consolazio, C.F. (1975). Effects of a glucose meal on human pulmonary function at 1600 and 4300 m altitu¬des. Aviat Sapace Environ Med, 46,
Fulco, C.S., Friedlander, A.L., Muza, S.R., Rock, P.B., Robinson, S., Lammi, E.,

Baker-Fulco, C.J., Lewis, S.F & Cymerman, A. (2002). Energy intake deficit and physical performance at altitude. Aviat Space Environ Med, 73(8), 758-765. Garner, S.H., Sutton, J.R., Burse, R.L, McComas, A.J., Cymerman, A. & Ho-uston, C.S. (1990). Operation Everest II: Neuromuscular performance under conditions of extreme simulated alti¬tude. J Appl Physiol, 68(3), 1167¬1172.
Gollnick, P.D. (2001). Energy metabolism and prolonged exercise. In Lamb, D.R. & Murray, R. (Eds) Prespectives In Exercise Science and Sports Medici¬ne Vol l: Prolonged Exercise (pp 1¬37). Indianapolis: Benchmark Press.
Gore, C.J., Hahn, A.G., Watson, D.B., Norton, K.I., Wood, R.J., Campbell, D.P. & Emonson, D.L. (1996). Arterial desaturation in trained cyclists during maximal exercise at 580 m altitude. J Appl Physiol, 80(6), 2204-10.
Hansen, J.E., Hartley, L.H. & Hogan, R.P. (1972). Arterial oxygen increase by high-carbohydrate diet at altitude. J Appl Physiol, 33, 441-445.
Hellstrom, L., Blaak, E. & Hagstrom-Toft, E. (1996). Gender differences in adre-nergic regulation of lipid mobilization during exercise. Int J Sports Med,
17(6), 43-447.
Hoppeler, H., Vogt, M., Weibel, E. & Flück, M. (2003). Response of skeletal muscle mitochondria to hypoxia. Exp Physi-
ol, 88(1), 109-119.
Hoppeler, H. & Vogt, M. (2001). Muscle tis¬sue adaptations to hypoxia. J Exp Bi-
ol, 204, 3133-3139.
Hornbein, T.F. (2001). The high-altitude bra¬in. J Exp Biol, 204, 3129-3132.
Höpfl, G., Omolara, O. & Max, G. (2003). Hypoxia and high altitude, the mole-cular response. In Robart C. Roach,
Peter D. Wagner & Peter H. Hacket (Eds) Hypoxia Trough The Lifecyle. (pp.89-115). New York: Kluwer Aca-demic/Plenum Publisers.
Katschinski,D.M., Le, L., Heinrich, D., Wag¬ner, K.F., Hofer, T., Schindler, S.G. & Wenger, R.H. (2002). Heat induction of the unphosphorylated form of hypoxia-inducible factor-1a is de-pendent on heat shock protein-90 activity. J Biol Chem, 277(11), 9262-9267.
Koulman, N., Melin, B., Bourdon, Peronnet, F., Jimenez, C., Pouzeratte, N., Savo-urey, G., Launay, J.C. & Bittel, J. (1999). Effects of acute hypobaric hypoxia on the appearance of inges¬ted deuterium oxide-labelled car¬bohydrate beverage in body fluids of humans during prolonged cycling exercise. Eur J Appl Physiol, 79, 397¬403.
Larsen, J.J., Hansen, J.M., Olsen, N.V., Gal-bo, H. & Dela, F. (1997). The effect of altitude hypoxia on glucose homeos-tasis in men. J Physiol, 505(Pt1), 241¬249.
Lawless, N.P., Dillard, T.A., Torrington, K.G., Davis, H.Q. & Kamimori, G. (1999). Improvement in hypoxemia at 4600 meters of simulated altitude with car-bohydrate ingestion. Aviat Space En-viron Med, 70(9), 874-878.
Lundby, C., Saltin, B. & van Hall, G. (2000).
The 'lactate paradox', evidence for a transient change in the course of acclimatization to severe hypoxia in lowlanders. Acta Physiol Scand,
170(4), 265-9. Lundby, C. & Van, H.G. (2002). Substrate uti¬lization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 me¬ter. Acta Physiol Scand, 176, 195¬201.
Mazess, R.B. & Baker, P.J. (1964). Diet of the

Quechua Indians living at high altitu¬de. Am J Clin Nutr, 15, 341-351. McClelland, G.B., Hochachka, P.W. & Wber, J.M. (1998). Carbohydrate utilization during exercise after high-altitude acclimation: A new perspective. Proc Natl Acad Sci, 95, 10288-10293.
McClelland, G.B., Hochachka, P.W. & Weber,
J.M. (1999). Effect of high altitude acclimation on NEFA turnover and li-pid utilization during exercise in rats. Am J Physiol, 277, E1095-1102. Meeuwsen, T., Hendriksen, I.J. & Holewijn, M. (2001). Training-induced increases in sea-level performance are enhan¬ced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol, 84(4),
Montain, S.J. & Young, A.J. (2003). Diet and physical performance. Appetite, 40, 255-267.
Niess, A.M., Fehrenbach, E., Strobel, G., Ro-ecker, K., Schneider, E.M., Buergler, J., Fuss, S., Lehmann, R., Northoff,
H. & Dickhuth, H.H. (2003). Evaluati¬on of stress responses to interval tra¬ining at low and moderate altitudes. Med Sci Sports Exerc, 35(2), 263-9. Parolin, M.L., Spriet, L.L., Hultman E., Hollid-ge-Horvat, M.G., Jones, N.L. &. He-igenhauser, G.J.F. (2000). Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Am J Physiol
Endocrinol Metab, 278, E522-E534.
Porcelli, M.J. & Gugelchul, G.M. (1995). A trek to top: A review of Acute Moun¬tain Sicknness. J Am Osteopath As¬soc, 95(12), 718-720.
Powers, S.K., Martin, D., Cicale, M., Collop, N., Huang, D. & Criswell, D. (1992). Exercise-induced hypoxemia in ath-lete: Role of inadequate hyperventila-tion. Eur J Apply Physiol, 64, 37-42.
Reynolds, R.D., Lickteig, J.A., Howard, M.P.
& Deuster, P.A. (1998). Intakes of high fat and high carbohydrate foods by human increased with exposure to increasing altitude during an expedi-tion to Mount Everest. J Nutr, 128, 50-55.
Roberts, A.C., Butterfield, G.E., Cymerman, A., Reeves, J.T., Wolfel, E.E. & Bro¬oks, G.A. (1996). Acclimatization to 4300-m altitude decreases reliance on fat as a substrate. J Appl Physiol, 81(4), 1762-1771.
Rose, M.S., Houston, C.S., Fulco, C.S., Co¬ates, G., Sutton, J.R. & Cymerman, A. (1988). Operation Everest II: Nutriton and body composition. J Appl Physi-ol, 65(6), 2545-2551.
Rusko, H.R. (1996). New aspects of altitude training. Am J Sports Med, 24 (6
Suppl), S48-52.
Schols,W.J. & Westerterp, K.R. (2002). Hypoxia, nitrogen balance and body weight. Eur Resp J, 20, 252-243.
Sharma, A., Singh, S.B., Panjwani, U., Ya-dav, D.K., Amitabh, K., Singh, S. & Selvamurthy, W. (2002). Effect of car-bohydrate supplement on feeding behaviour an exercise in rats expo¬sed to hypobaric hypoxia. Appetite,
39, 127-135.
Steensberg, A., Febbraio, M.A., Osada, T., Schjerling, P., van Hall, G., Saltin, B. & Pedersen, B.K. (2001). Interleukin-6 production in contracting human ske-letal muscle is influenced by pre-exercise muscle glycogen content. J Physiol, 537(2), 633-639.
Swenson, E.R., MacDonald, A., Vatheuer, M., Maks, C., Treadwell, A., Allen, R. & Schoene, R.B. (1997). Acute moun¬tain sickness is not altered by a high carbohydrate diet nor associated with elevated circulating cytokines. Aviat Space Environ Med,68(6), 499¬503

Tarnopolsky, M.A. & Ruby, B.C. (2001). Sex differences in carbohydrate metabo-lism. Curr Opin Clin Nutr Metab Care,
4, 521-526.
Tarnopolsky, M.A., Zawada, C., Richmond, L.B., Carter, S., Shearer, J., Graham, T. & Phillips, S.M. (2001). Gender dif-ferences in carbohydrate loading are related to energy intake. J Appl
Physiol, 91, 225-230.
Terrados, N. (1992). Altitude training and muscular metabolism. Int J Sports
Med, 13(1) S206-9. van Hall, G., Calbet, J.A., Sondergaard, H. & Saltin, B. (2001). The re-establish¬ment of the normal blood lactate res¬ponse to exercise in humans after prolonged acclimatization to altitude.
J Physiol, 536(3), 963-75.
van Hall, G., Calbet, J.A.L., Sondergard, H. & Saltin, B. (2002). Similar carbohydra¬te but enhanced lactate utilization during exercise after 9 week of accli¬matization to 5620 m. Am J Physiol Endocrinol Metab, E1203-E1213.
Vats, P., Mukherje, A.K., Kumria, M.M., Singh. S.N., Patil, S.K., Rangnathan,
5. & Sridharan, K. (1999). Changes in
the activity levels of glutamine
synthetase, glutaminase and glyco-
gen synthetase in rats subjected to
hypoxic stress. Int J Biometreol, 42,
Wagenmarkers, A.J. (1992). Amino acid me-tabolism, muscular fatigue and muscle wasting. Speculations on adaptations at high altitude. Int J Sports Med,13(1),110-3. Review.
West, J.B. (1986). Lactate during exercise at extreme altitude. Fed Proc, 45(13),
West, J.B. (1990). Tolerance to severe hypo-xia: lessons from Mount Everest. Ac¬ta Anaesthesiol Scand, 94, 18-23.
West, J.B. West J.B, Boyer, S.J., Graber, D.J., Hackett, P.H., Maret, K.H., Mil¬ledge, J.S., Peters, R.M. Jr., Pizzo, C.J., Samaja, M, & Sarnquist, F.H. (1983). Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol, 55, 688-98. Westerterp, K.R. (2001a). Limits to susta¬inable human metabolic rate. J Exp
Biol, 204, 3183-3187.
Westerterp, K.R. (2001b). Energy and water balance at high altitude. News Physi-
ol Sci, 16, 134-137.
Westerterp-Plantega, M.S., Westerterp, K.R., Rubbns, M., Verwegen, C.R.T., Richelet, J-P. & Gardette, B. (1999).
Appetite at high altitude: a simulated ascent of Mount Everest. J Appl
Physiol, 87(1), 391-399.
Weyand, P., Cherie, S., Martinez-Ruitz, R., Bundle, M., Bellizzi, M. & Wrigt, S. (1999). High- speed running perfor-mance is largely unaffected by hypo-xic reduction in aerobic power. J Appl
Physiol, 86(6), 2059-2064.
Wilmore, J.H & Costill, D.L. (1994). Physi¬ology of Sport and Exercise. Cham¬paign: Human Kinetics Books.
Young, A.J., Evans, V.J., Cymerman, A., Pandolf, K.B., Knapik, J.J. & Maher, J.T. (1982). Sparing Effect of Chronic High Altitude Exposure on Muscle Glycogen Utilization. J Appl Physiol,
52, 857-862. Young, A.J., Young, P.M., McCullough, R.E., Moore, L.G., Cymerman, A. & Reeves, J.T. (1991). Effect of beta adrenergic blockade on plasma lac-tate concentration durng exercise at high altitude. Eur J Appl Physiol, 63,
Young, P.M., Sutton, J.R., Gren, H.J., Reeves, J.T., Rock, P.B., Houston C.S. & Cymerma, A. (1992). Operation Everest II: Metabolic and hormonal responses to incremental exercise to exhaustion. J Appl
Physiol, 73(6), 2574-2579.

Thank you for copying data from