You are here

Septik Ratlarda Metilen Mavisinin Akciğer Hasarı Üzerine Etkileri

The Effects of Methylene Blue on Lung Injury in Septic Rats

Journal Name:

Publication Year:

Abstract (2. Language): 
Aim: The aim of this study is to investigate the effects of methylene blue (MB) on NO production, antioxidant status and lipid peroxidation in lung injury during the different stages of sepsis in rats. Material and methods:Sixty Sprague Dawley rats weighing 200-230 g, were randomly divided into 3 groups. The rats of the first group were sham operated (control, group C); the second group, sepsis (group S); the third group received MB (25mg/kg, i.p.), MBS (sepsis+MB). Sepsis was induced by caecal ligation and puncture method. Each group was randomly subdivided into two subgroups (early and late sepsis) consisting of 10 rats which were sacrificed at 9 or 18 h after surgical procedure. In the lung tissue, total nitrite/nitrate (NOX), superoxide dismutase (SOD), catalyse (CAT), glutathion peroxidase (GSH-PX) and malondialdehyde (MDA) levels were measured. Damage to the lung tissue was graded by a pathologist on a scale of 1 (best) to 4 (worst). Results: In group MBS, CAT levels increased significantly both in early and late sepsis groups, whereas, SOD and GSH-PX levels increased significantly only in early sepsis groups compared to group S. Methylene blue, significantly decreased NOx and MDA levels in both early and late sepsis groups compared to group S (p<0.05 ). Group S showed a marked increase of inflammatory inflammation into the interstisyel space and thickening of the alveolar septa, whereas the alveolar damage score was lower in the MBS groups. Conclusion: Besides decreasing the NO synthesis, MB also increased SOD, CAT and GSH-Px levels and thereby lipid peroxidation was prevented and lung injury was significantly decreased especially during early sepsis.
Abstract (Original Language): 
Amaç: Sepsisin farklı fazlarında, akciğer dokusundaki nitrik oksit (NO) üretimi, antioksidan kapasite ve lipid peroksidasyonu üzerine metilen mavisinin (MM) etkileri rat sepsis modelinde araştırıldı. Gereç ve Yöntem: 200-230 g, Sprague Dawley cinsi 60 rat rastgele 3 gruba (n=20) ayrıldı: 1. grup, kontrol grubu (grup K); 2. grup, sepsis (grup S); 3.grup, sepsis+MM 25mg/kg intraperitoneal (grup MMS). Sepsis, çekal ligasyon ve delme metodu ile oluşturuldu. Her grup rasgele 10 rattan oluşan iki alt gruba ayrıldı. Erken sepsis grubu cerrahi prosedürden 9 s, geç sepsis grubu 18 s sonra sakrifiye edildi. Akciğer dokusunda süperoksid dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GSH-Px), malondialdehid (MDA) ve total nitrit+nitrat (NOx) düzeyleri ölçüldü. Akciğer doku kesitleri 1-4 arası doku hasar skorlamasına göre histopatolojik olarak değerlendirildi. Bulgular: Grup MMS’de, CAT düzeyi erken ve geç sepsis döneminde, SOD ve GSH-Px düzeyi ise sadece erken sepsis döneminde grup S’ye göre anlamlı olarak arttı. MM, hem erken hem de geç sepsis dönemlerinde NOx ve MDA düzeylerini grup S’ye göre anlamlı olarak azalttı (p<0.05). Histopatolojik incelemede grup S’de interstisyel alanda belirgin iltihabi infiltrasyon artışı ve alveolar septalarda kalınlaşma görülürken, grup MMS’de daha az alveolar hasar mevcuttu. Sonuç: MM’nin, NO sentezini azaltıcı etkisinin yanısıra SOD, KAT ve GSH-Px düzeylerini arttırarak lipid peroksidasyonunu önlediği ve böylece erken sepsis fazında daha belirgin olmak üzere akciğer hasarını azalttığı saptandı.
207-212

REFERENCES

References: 

1. Lang JD, McArdle PJ, O’Reilly PJ, Matalon S. Oxidant-antioxidant balance in acute
lung injury. Chest 2002; 122 (Suppl 6): 314-20.
2. Ware LB. Advances in the pathogenesis and treatment of the acute respiratory
distress syndrome. Clinical Pulmonary Med 2003; 10:208-18.
3. Metnitz PGH, Bartens C, Fischer M, Fridrich P, Steltzer H, Druml W. Antioxidant
status in patients with acute respiratory distress syndrome. Intensive Care Med 1999;
25: 180-5.
4. Roth E, Manhart N, Wessner B. Assessing the antioxidative status in critically ill
patients. Curr Opin Clin Nutr Metab Care 2004; 7:161-8.
5. Salaris SC, Babbs CF, Voorhees WD. Methylene blue as an inhibitor of superoxide
generation by xanthine oxidase: a potential new drug for the attenuation of
ischemia/reperfusion injury. Biochem Pharmacol 1991; 42: 499-506.
6. Weinbroum A, Goldin I, Kluge Y. Methylene blue in preventing hemodynamics and
metabolic derangement following superior mesenteric artery clamping/unclamping:
An intratracheal vs. intraperitoneal dose response study. Shock 2002; 17: 372-6.
7. Donati A, Conti G, Loggi S, et al. Does methylene blue administration to septic
shock patients affect vascular permeability and blood volume? Crit Care Med 2002;
30: 2271-7.
8. Cheng X, Pang C. Pressor and vasoconstrictor effects of methylene blue in
endotoxaemic rats. Arch Pharmacol 1998; 357: 648-53.
9. Galili Y, Kluger Y, Mianski Z, Iaina A, Vollman Y, Marmur S, Soffer D,
Chernikovsky T, Klausner JP, Rabau MY. Methylene Blue- a promising treatment
modality in sepsis induced by bowel perforation. Eur Surg Res 1997; 29:390-5.
Demirbilek ve ark
21 2
10. Galili Y, Ben-Abraham R, Weinbroum A, Marmur S, Iaina A, Volman Y, Peer G,
Szold O, Soffer D, Klausner J, Rabau M, Kluger Y. Methylene blue prevents
pulmonary injury after intestinal ischemia-reperfusion. J Trauma 1998; 45:222-6.
11. Kirov MY, Evgenov OV, Evgenov NV, Egorina EM, Sovershaev MA,
Sveinbjornsson B, Nedashkovsky EV, Bjertnaes LJ. Infusion of methylene blue in
human septic shock: A pilot, randomized, controlled study. Crit Care Med 2001; 29:
1860-7.
12. Hwang TL, Yang JT, Lau YT. Arginine- nitric oxide pathwayin plasma membrane of
rat hepatocytes during early and late sepsis. Crit Care Med 1999; 27: 137-41.
13. Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock- a review of
laboratory models and a proposal. J Surg Res 1980; 29:189-201.
14. Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin
Chem 1988; 34: 497-500.
15. Paglia DE, Valentine W. Studies on the quantitative and qualitative characterisation
of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158-169.
16. Aebi HC. In Bergmeyer U, ed. Methods of enzymatic analysis, New York and
London. Academic press, 1974; pp: 673-7.
17. Sinnuber RO, Yut C, Chang YT. Chareterization of the red pigment formed in the
thiobarbituric acid determination of oxidative rancidity. Food Res 1958; 23: 626-32.
18. Sakawa T, Matsushita S. Coloring condition of thiobarbituric acid test of detecting
lipids hydroperoxides. Lipids 1980; 15: 137-44.
19. Granger DL, Taintor RR, Boockvar KS, Hibbs JB Jr. Measurement of nitrate and
nitrite in biological samples using nitrate reductaseand Griess reaction. Meth Enzymol
1996; 268: 142–51.
20. Lowry O, Rosenbraugh N, Farr L. Protein measurement with theophiline phenol
reagent. J Biol Chem 1951; 183: 265-75.
21. Wang P, Zheng F, Irshad H. Mechanism of Hepatocellular Dysfunction During Early
Sepsis. Arch Surg 1997; 132: 364-70.
22. Iqbal M, Cohen R, Marzouk K, Liu S. Time course of nitric oxide, peroxynitrite and
antioxidants in the endotoxemic heart. Crit Care Med 2002; 30: 1291-6.
23. Kirov MY, Evgenov OV, Bjertnaes LJ. Combination of intravenously infused
methylene blue and inhaled nitric oxide ameliorates endotoxin-induced lung injury in
awake sheep. Crit Care Med 2003; 31: 179-86.
24. Zhang H, Rogiers P, Preiser JC, Spapen H, Manikis P, Metz G, Vincent JL. Effects of
methylene blue on oxygen availability and regional blood flow during endotoxic
shock. Crit Care Med 1995; 23: 1711-21.
25. Peter C, Hongwan D, Kupfer A, Lauterburg B. Pharmacokinetics and organ
distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol 2000; 56:
247-50.
26. Callaway NL, Riha PD, Bruchey AK, Munshi Z, Gonzalez-Lima F. Methylene blue
improves brain oxidative metabolism and memory retention in rats.
Pharmacol Biochem Behav 2004; 77: 175-81.

Thank you for copying data from http://www.arastirmax.com