ADYAA, M.; ARMSTRONG, J.; COLLOPY, F.; KENNEDY, M. (2000). An application of rule-based
forecasting to a situation lacking domain knowledge. International Journal of Forecasting,
16: 477-484. http://dx.doi.org/10.1016/S0169-2070(00)00074-1
ARMSTRONG, J.S. (1983). Relative accuracy of judgmental and extrapolative methods in
forecasting annual earning. Journal of Forecasting, 2: 437-447.
http://dx.doi.org/10.1002/for.3980020411
ASSMUS, G. (1984). New Product Forecasting. Journal of Forecasting, 3: 121-138.
http://dx.doi.org/10.1002/for.3980030202
BASS, F.M.; TRICHY, V.K.; DIPAK, C. (1994). Why the Bass model fits without decision
variables. Marketing Science, 13(3): 203. http://dx.doi.org/10.1287/mksc.13.3.203
CHING-CHIN, C.; IEONG KA IENG, A.; LING-LING, W.; LING-CHIEH, K. (2010). Designing a
decision support system for new product sales forecasting. Expert Systems with
applications, 37(2): 1654-1665. http://dx.doi.org/10.1016/j.eswa.2009.06.087
CHU, BS.; CAO, D-B. (2011). Dynamic Cubic Neural Network Demand Momentum for New
Product Sales Forecasting. An International Interdisciplinary Journal, 14(4): 1171-1182.
CLEMEN, R.T. (1989). Combining forecasts: a review and annotated bibliography. International
Journal of Forecasting, 5(4): 559-583. http://dx.doi.org/10.1016/0169-2070(89)90012-5
FADER, P.S.; HARDIE, B.G. (2001). Forecasting trial sales of new consumer packaged goods. In
J.S. Armstrong (Eds.), Principles of forecasting. A handbook for researchers and
practitioners (Chapter 18). Springer. http://dx.doi.org/10.1007/978-0-306-47630-3_28
FADER, P.S.; HARDIE, B.G. (2005). The value of simple models in new product forecasting and
customer-base analysis. Applied Stochastic models in business and industry, 21(4):
461-473. http://dx.doi.org/10.1002/asmb.592
GARDNER, E. (2005). Exponential smoothing: the state of the art-Part II. International Journal
of Forecasting, 22 (4): 1-28.
GARDNER, E.S. JR.; MCKENZIE, E. (1985). Forecasting trends in time series. Management
Science, 31(10): 1237-1246. http://dx.doi.org/10.1287/mnsc.31.10.1237
GARTNER, W.B.; THOMAS, R.J. (1993). Factors affecting new product forecasting accuracy in
new firms. Journal of product innovation management, 35-52. http://dx.doi.org/10.1016/0737-
6782(93)90052-R
-22-
Intangible Capital – http://dx.doi.org/10.3926/ic.482
HARDIE, B.G.; FADER, P.S.; WISNIEWSKY, M. (1998). An empirical comparison of new product
trial forecasting models. Journal of Forecasting, 17: 209-229. http://dx.doi.org/10.1002/
(SICI)1099-131X(199806/07)17:3/4<209::AID-FOR694>3.0.CO;2-3
HAYKIN, S. (1999). Neural network: A comprehensive foundation. NJ, Prentice-Hall. Industrial
Marketing Management, 28: 565-571.
KAHN, K.B. (2002). An exploratory Investigation of new product forecasting practices. The
Journal of Product Innovation Management, 19: 133-143.http://dx.doi.org/10.1016/S0737-
6782(01)00133-3
KAHN, K.B. (2006). New Product Forecasting: An Applied Approach Armonk. NY: M.E. Sharpe.
LAWRENCE, M.; GOODWIN, P.; O’CONNOR, M.; ÖNKAL, D. (2006). Judgmental forecasting: A
review of progress over the last 25 years. International Journal of Forecasting, 22(1):
493-518. http://dx.doi.org/10.1016/j.ijforecast.2006.03.007
LILIEN, G.L.; RANGASWAMY, A.; DE BRUYN, A. (2007). Marketing Engineering. Retrieved 6th
de May de 2011, from Principles of Marketing Engineering Technical Notes, available online
at: http://www.mktgeng.com/intro_principlestechnicalnotes.cfm
LINSTONE, H.A.; TUROFF, M. (1975). Introduction. In H.A. Linstone & M. Turoff (Eds.). The
Delphi method: Techniques and applications. MA: Addison-Wesley Publishing Company.
LYNN, G.S.; SCHNAARS, S.P.; SKOV, R.B. (1999). A Survey of New Product Forecasting
Practices in Industrial High Technology and Low Technology Businesses – Traditional versus
Multiattribute Approaches. Industrial Marketing Management, 28(6): 565-571.
http://dx.doi.org/10.1016/S0019-8501(98)00027-3
M4-Competition (2010). Available online at: http://m4competition.com/ (Last access date:
May 31st, 2011).
MAHAJAN, V. (1990). New product models: Practice, shortcomings and desired improvements.
Journal of Product Innovation Management, 9: 128-139. http://dx.doi.org/10.1016/0737-
6782(92)90004-V
MAHAJAN, V.; WIND, Y. (1988). New product forecasting models. Directions for research and
implementation. International Journal of Forecasting, 4: 341-358.
http://dx.doi.org/10.1016/0169-2070(88)90102-1
MAHAJAN, V.; MULLER, E.; BASS, FM. (1990). New product diffusion models in marketing. A
review, and direction for research. Journal of Marketing, 54(1): 1-26.
http://dx.doi.org/10.2307/1252170
MAKRIDAKIS, S.; WHEELWRIGHT, S.C. (1998). Métodos de pronósticos. Limusa: Noriega
editores. Management Science, 31: 1237-1246.
-23-
Intangible Capital – http://dx.doi.org/10.3926/ic.482
MEADE, N.; ISLAM, T. (2006). Modelling and forecasting the diffusion of innovation –A 25-year
review-. International Journal of Forecasting, 22: 519-545.
http://dx.doi.org/10.1016/j.ijforecast.2006.01.005
MENTZER, T.; MOON, M. (2005). Sales forecasting management: A demand management
approach. Sage Publications, Inc.
MICHELFELDER, R.A.; MORRIN, M. (2006). Intellectual Property Management Institute., from
Overview of New Product Diffusion Sales Forecasting Models, available online at:
http://www.ipinstitute.com/onpdsfm.htm. (Last access date: 26th April, 2011).
OZER, M. (1999). A survey of New Product Evaluation Models. Journal Product Innovation
Management, 16: 77-94. http://dx.doi.org/10.1016/S0737-6782(98)00037-X
PARKER, P.M. (1994). Aggregate diffusion forecasting models in marketing: A critical review.
International Journal of Forecasting, 10: 353-380. http://dx.doi.org/10.1016/0169-2070(94)90013-
2
PARRY, M.E.; CAO, Q.; SONG, M. (2011). Forecasting New Product Adoption with Probabilistic
Neural Networks. Journal Product Innovation Management, 28(1): 78-88.
http://dx.doi.org/10.1111/j.1540-5885.2011.00862.x
PRINGLE, L.G.; WILSON, R.; BRODY, E.D. (1982). NEWS: A decision-oriented model for new
product analysis. Marketing science, 1: 1-29. http://dx.doi.org/10.1287/mksc.1.1.1
SANDERS, N.R.; MANRODT, K.B. (2003). The efficacy of using judgmental versus quantitative
forecasting methods in practice. The International Journal of Management Science, 31:
511-522.
SCHOCKER, A.D.; HALL, W.G. (1986). Pretest market models: A critical evaluation. Journal of
Product Innovation Management, 3: 86-107. http://dx.doi.org/10.1016/0737-6782(86)90031-7
SOOD, A.; JAMES, G.M.; TELLIS, G.J. (2009). Functional regression: a new model for
predicting market penetration of new products. Marketing Science, 28(1): 36-51.
http://dx.doi.org/10.1287/mksc.1080.0382
THOMAS, R.J. (1993). New product development: Managing and forecasting for strategic
success. NY: Wiley.
URBAN, G.L.; HAUSER, J.R. (1993). Pretest market forecasting. In Design and marketing of
new products (chapter 16).Prentice-Hall Inc.
URBAN, G.L.; KATZ, G.M. (1983). Pre-test market models: validation and managerial
implications. Journal of Marketing Research, 20(3): 221-234. http://dx.doi.org/10.2307/3151826
-24-
Intangible Capital – http://dx.doi.org/10.3926/ic.482
WEBBY, R.; O’CONNOR, M. (1996). Judgmental and statistical time series forecasting: a review
of literature. International Journal of Forecasting, 12: 91-118. http://dx.doi.org/10.1016/0169-
2070(95)00644-3
WHERRY, J.S. (2006). Simulated test-marketing: its evolution and current state in the industry.
MIT Sloan School of Management, 1-12. Available online at:
http://dspace.mit.edu/bitstream/handle/1721.1/37225/85813336.pdf (Last access date:
24th January, 2014).
WIND, J.; MAHAJAN, V. (1997). Issues and opportunities in new product development: An
introduction to the special issue. Journal of Marketing Research, 34: 1-12.
http://dx.doi.org/10.2307/3152060
WIND, Y. (1974). A Note on the Classification and Evaluation of New Product Forecasting
Models. Paper presented at the American Marketing Association Conference.
Thank you for copying data from http://www.arastirmax.com