You are here

Carbonatación de estructuras de hormigón ubicadas en ambiente urbano y rural

Carbonation of concrete structures located in urban and rural environment

Journal Name:

Publication Year:

Abstract (2. Language): 
The objective of this investigation was to study the effect of carbonation on two reinforced concrete structures of 42 and 60 years old, located on two different environments: urban and rural. Samples of concrete were taken, the carbonation depth was measured and density, absorption and porosity tests were performed. The carbonation process can be modeled by the equation of the square root of time. From that model, the carbonation constant for each sample was calculated, the progress of the carbonation depth versus time was plotted and the correlation between porosity and depth of carbonation was analyzed. It was verified the existence of different microclimates surrounding structural elements. The moisture content of the surrounding surface of each structural element is the most important factor affecting the progress of carbonation.
6-15

REFERENCES

References: 

[1] J. Bickley, R. Hooton and K. Hover, “Performance specifications for durable concrete”, Concrete International, vol. 9, pp.
51-57, 2006.
[2] V. Baroghel-Bouny, “Which toolkit for durability evaluation as regards chloride ingress into concrete? Part II:
Development of a performance approach based on durability indicators and monitoring parameters”. Proceedings of
3rd International Workshop “Testing and modelling chloride ingress into concrete”. Madrid, Spain, pp. 137-163, 2002.
[3] L. Eperjesi, E. Ferreira Hirschi and A. Vicente, “Avances en la normalización de la resistencia a la carbonatación de
estructuras de hormigón armado”. I Congreso Hormigón Premezclado de las Américas 2010, XII Congreso
Iberoamericano del Hormigón Premezclado, IV Congreso Internacional de Tecnología del Hormigón y 18 Reunión
Técnica de la Asociación Argentina de Tecnología del Hormigón. Mar del Plata, Argentina, 8 pág., 2010.
[4] fib Bulletin 34, “Model code for service life design”. Internacional Federation for Structural Concrete (fib), Switzerland,
110 pág., 2006.
[5] EHE-08, “Instrucción del hormigón estructural”. Suplemento del Boletín Oficial del Estado Nº 203, España, 304 pág. ,
2008.
[6] CYTED, “Manual de inspección, evaluación y diagnóstico de corrosión en estructuras de hormigón armado”. Programa
Iberoamericano de Ciencia y Tecnología para el Desarrollo, 208 pág., 1998.
[7] P. Garcés Terradillos, M. Climent Llorca and E. Zornoza Gómez, “Corrosión de armaduras en estructuras de hormigón
armado”. Editorial Club Universitario, España, 126 pág., 2008.
[8] L. Traversa, “Corrosión de armaduras en atmósferas rurales, urbanas, marinas e industriales”. Durabilidad del hormigón
estructural. Asociación Argentina de Tecnología del Hormigón, pp. 217-257, 2001.
[9] L. Traversa, A. Di Maio and J. Sota, “Metodología de evaluación de patologías en estructuras de hormigón armado”.
Revista Hormigón, H49, pp. 29-39, 2011.
[10] L. Traversa, “Corrosión de armaduras en el hormigón armado: una problemática del patrimonio moderno”. 2do.
Congreso Iberoamericano y X Jornada “Técnicas de Restauración y Conservación del Patrimonio”. La Plata, Argentina, 12
pág., 2011.
[11] A. Capelli, M. Piccolo and A. Campo, “Clima urbano de Bahía Blanca”. Departamento de Geografía y Turismo,
Universidad Nacional del Sur, 200 pág., 2005.
[12] K. George, L. Ziska, J. Bunce and B. Quebedeaux, “Elevated atmospheric CO2 concentration and temperature across an
urban–rural transect”. Atmospheric Environment, vol. 41, pp. 7654–7665, 2007.
[13] S. Talukdar, N. Banthia, J. Grace and S. Cohen, “Carbonation in concrete infrastructure in the context of global climate
change: Part 2 – Canadian urban simulations”. Cement and Concrete Composites, vol. 34, pp. 931-935, 2012.
[14] ASTM C642, “Standard test method for density, absorption and voids in hardened concrete”. American Society for
Testing and Materials, 3 pág., 1997.

Thank you for copying data from http://www.arastirmax.com