You are here

Metallurgical Characterisation of Recovered Aluminium Alloys in Cameroon

Journal Name:

Publication Year:

Abstract (2. Language): 
This article is a comparative study of metallurgical characteristics of the different aluminium alloys gotten through recycling of recovered aluminium in Cameroon. A simple experimental device for the foundry of secondary aluminium blend, of very good quality built around a movable charcoal furnace is presented. It enables better energy efficiency, a better distribution of the heat around the crucible and indirectly assures good quality of the products obtained, while respecting the economic constraints and users’ safety. Six refining methods are proposed by the addition of polyvinyl chloride (method A), coke rich in carbon CHS (method C), ammonium chloride NH4Cl (method E), manganese dioxide MnO (method T), acrylic nitrite (C2H3Cl)n (method P) and sodium chloride NaCl (method S). A critical analysis of the different recycling techniques is presented as well as a proposed process of melting and refining that enables the obtaining products with high degrees of purity. The results are then compared to the results obtained from the industrial methods of aluminium refining such as fractional crystallization (FC), granular filtration (GF) and dissolution in a metal solvent (DS). The later (DS) gives the rate of 6.540% of accumulated alloy elements and enables the best purification (93.460%), while the NaCl gives the lowest global rate of additive elements (9.478%), with the best purity index (90.522%) amount the proposed methods. Results obtained show that this method of refining improves the metallurgical properties of secondary aluminium alloy blends and guarantees better safety, as well as reducing the risks of environmental pollution.
FULL TEXT (PDF): 
672-679

REFERENCES

References: 

[1] M. Fogué, G. F. Anago, B. Soh Fotsing et P. Ngnaguepa, “L’aluminium au service de l’alimentaire : fonderie et affinage au
Cameroun,” Déchets, Sciences & Techniques, No. 11, 3ème trimestre, pp. 12-16, 1998.
[2] Jean Perron, “Modélisation mathématique simplifiée d’un four de métal chaud,” Thèse de docteur-ingénieur, Université
du Québec à Chicoutimi, 226 p, Juin 1987.
[3] Théodore Tchotang, “Contribution au traitement de recyclage de l’aluminium de récupération au Cameroun,” Thèse de
doctorat/Ph.D en sciences de l’Ingénieur, Université de Yaoundé 1, 297 p, 2013.
[4] P. Lailler, “Performance improvements in aluminum melting furnaces,” Light metal age, vol. 41, n°. 9, pp. 22-23,
October 1994.
[5] Annual Book of ASTM Standards, Section 3, “Metal test methods and analytical procedures,” E466-82, vol. 3.1, pp. 470-
471, 1995.
[6] M. Samuel, “A new technique for recycling aluminum scraps,” Journal of Materials Processing Technology, n°. 135, pp.
117-124, 2003.
[7] Bao-de Sun, Wen Jiang Ding, Da Shu and Yao-he Zhou, “Purification technology of molten aluminium,” Journal of central
south university of technology, vol. 11, n°. 2, pp. 134-141, 2004.
[8] Gaston Riverin, “Purification de l’aluminium par cristallisation fractionnée,” Mémoire de maîtrise en ressources et
systèmes, Université du Québec à Chicoutimi, 132 p, Juin 1993.
[9] Harald Gorner, “Removal of dissolved elements in aluminium by filtration,” Thesis for the degree of Philosophiae Doctor,
Norwegian university of sciences and technology, NTNU, n°. 225, 228 p, 2009.
[10] Paul R. Kruesi, “Procédés de récupération et de purification d’aluminium secondaire,” OMPI, WO/2007/062402, 2007.
[11] Norme NFA50-105, “Caractéristiques chimiques du métal dans la fabrication de matériel et d’ustensiles servant à la
préparation, à la cuisson des aliments et à la conservation des aliments”.
[12] J. A. S. Tenorio, D. C. R. Espinosa, “Effect of salt-oxyde interaction on the process of aluminum recycling,” Journal of
Light Metals, vol. 2, pp. 89-93, 2002.

Thank you for copying data from http://www.arastirmax.com