You are here

Etude cinétique et thermodynamique d’adsorption de Composés phénoliques sur un matériau mesoporeux hybride organique-inorganique

[ Kinetics and thermodynamics adsorption of phenolic compounds on organic-inorganic hybrid mesoporous material ]

Journal Name:

Publication Year:

Abstract (2. Language): 
The objective of this work is thus to study the kinetics, thermodynamics and adsorption isotherms of two phenolic compounds phenol (PhOH) and P‐hydroxy benzoic acid (4AHB) on a mesoporous material type MCM‐ 48 functionalized with an organosilane type trimethylchlorosilane (TMCS) (MCM‐48‐G). At first, the study of the kinetics, thermodynamics and adsorption isotherms of phenolic compounds in each single solution was performed. In a second step, a similar study was performed on a mixture of these two molecules. Several kinetic models (pseudo‐first order, pseudo‐second order) were used to determine the kinetic parameters of adsorption. Several adsorption models (Langmuir, Freundlich) were also used to determine the thermodynamic parameters of adsorption isotherms. The effect of three‐dimensional pores of MCM‐48 and comparison of adsorption of PhOH and 4AHB was examined. It was found that MCM‐48‐G to a significant adsorption capacity for PhOH and 4AHB, this may be related to the hydrophobicity created by the organic function of TMCS in the MCM‐48‐G.The results of adsorption and PhOH 4AHB were analyzed using the Freundlich and Langmuir models. It was observed that the adsorption of 4AHB was higher than PhOH. Thermodynamics of adsorption showed that the values obtained for our sample confirm well the interactions with phenol and 4AHB are physical in nature. The adsorption of pollutants on our MCM‐48 (G) is a spontaneous and exothermic process.
Abstract (Original Language): 
L’objectif de ces travaux est ainsi d’étudier la cinétique, la thermodynamique et les isothermes d’adsorption de deux composés phénoliques le phénol (PhOH) et l’acide P‐hydroxy benzoïque (4AHB) sur un matériau mesoporeux de type MCM‐48 fonctionnalisée par un organosilane de type Trimethylchlorosilane (TMCS) (MCM‐48‐G). Dans un premier temps, l’étude de la cinétique, la thermodynamique et les isothermes d’adsorption de chacun des composés phénoliques en mono solution a été réalisée. Dans un second temps, une étude similaire a été effectuée sur un mélange de ces deux molécules. Plusieurs modèles cinétiques (pseudo‐premier ordre, pseudo‐second ordre) ont été utilisés afin de déterminer les paramètres cinétiques d’adsorption. Plusieurs modèles d’adsorption (Langmuir, Freundlich) ont également été utilisés afin de déterminer les paramètres thermodynamiques des isothermes d’adsorption. L'effet de pores tridimensionnels du MCM‐48 et la comparaison d'adsorption du PhOH et 4AHB a été examiné. Il a été trouvé que MCM‐48‐G à une grande capacité adsorption significative pour PhOH et 4AHB; ceci peut être lié à l’ hydrophobicité créé par la fonction organique du TMCS dans le MCM‐48‐G. Les résultats d’adsorption pour PhOH et 4AHB ont été analysés en utilisant les modèles Freundlich et Langmuir. Il a été observé que l'adsorption du 4AHB était plus haute que PhOH. La thermodynamique d'adsorption a montré que les valeurs obtenues pour notre échantillon confirment bien que les interactions avec le phénol et 4AHB sont de nature physique. L’adsorption de nos polluants sur la MCM‐48 (G) est un processus spontané et exothermique.
FULL TEXT (PDF): 
1116-1124

REFERENCES

References: 

[1] N.Coustel, F. Di Renzo, F. Fajula, “Improved stability of MCM‐41 through textural control,” journal Chem Commun, vol.
8, pp. 967‐968, 1994.
[2] A. Cauvel, D. Brunel, F. Di Renzo, F. Fajula, “Organic lining of MCM‐41‐type silicas,” American Institute of Physics, vol. 1,
pp. 354‐477, 1996.
[3] A. Cauvel, D. Brunel, F. Di Renzo, B. Fubini, E. Garrone, “Preferential grafting of alkoxysilane coupling agents on the
hydrophobic portion of the surface of micelle‐templated silica,” Langmuir, vol. 24, no. 10, pp. 807‐813, 2000.
[4] J.L. Shen, Y.C. Lee, Y.L. Liu, C.C. Yu, P.W. Cheng, C.F. Cheng, “Photoluminescence sites on MCM‐48”, Microporous and
Mesoporous Materials, Vol. 64, pp. 135‐143, 2003.
[5] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew, “Silica‐based mesoporous organic‐inorganic hybrid materials”,
Chem. Int. Ed. Engl, vol. 45, no. 20, pp. 3216‐3251, 2006.
[6] X. S. Zhao and G. Q. Lu, “Modification of MCM‐41 by surface silylation with trimethylchlorosilane and adsorption study,”
Journal Phys. Chem. B, Vol. 102, no. 9, pp. 1556‐1561, 1998.
[7] A.R. Dincer, Y. Gunes, N. Karakaya, “Coal‐based bottom ash (CBBA) waste material as adsorbent for removal of textile
dyestuffs from aqueous solution ”, Journal of Hazardous Materials, Vol. 141, no. 3, pp. 529‐535, 2007.
[8] Z. Yaneva, B. Koumanova, “Comparative modelling of mono‐ and dinitrophenols sorption on yellow bentonite from
aqueous solutions”, Colloid and Interface Science, Vol. 293 , no. 2, pp. 303‐311, 2006.
[9] Rengaraj, S., Moon S‐H., Sivabalan, R., Arabindoo, B, Murugesan, V., “Removal of phenol from aqueous solution and
resin manufacturing industry wastewater using an agricultural waste: rubber seed coat”, Hazardous Materials, Vol. 89,
no. 2, pp. 185‐196, 2002.
[10] S. Lagergren, S. Vetenskapsakad, “About the theory of so‐called adsorption of soluble substances,” Hand. Band., Vol. 24,
no. 4, pp. 1–39, 1898.
[11] Y. S. Ho , G. McKay, “Pseudo‐second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451‐
465, 1999.

Thank you for copying data from http://www.arastirmax.com