You are here

Modélisation et simulation de la cellule solaire de structure pin à base de silicium polycristallin

Modeling and simulation of the pin structure of solar cell based on polycrystalline silicon

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
In this work we propose the modeling of rear passivation effect on the performance of the polycrystalline solar cell. The rear passivation layers can reflect photons to the interior of the cell. Thus, prolonging their target and making easy their absorption while decreasing the surface recombination velocities of minority carriers at the base area. The conversion efficiency is estimated at 10.49 % for an optimal rear passivation using thin oxide /Silicon Nitride/Silicon oxide. In addition, Front passivation by the silicon nitride of polycrystalline solar cell has been proposed. We noted a very clear improvement of the efficiency for high Ammonia (NH3) to Silane (SiH4) gas flow ratio, the efficiency reaches 12.88% for R=10. We have also contributed in the modelling of grain boundaries current density in polysilicon. Electrical simulation shows the influence of grain boundaries surface recombination velocity in the optimization of the conversion efficiency. We noted that the sufficient and optimal surface recombination velocity 104 cm/s at the emitter heavily doped gives the optimum output. Therefore, the reduce of the grain boundaries surface recombination velocity at base region slightly doped increases the performance of the cell, it’s about 10 cm/s. The current density at the grain boundaries is closely related to the potential barrier at grain boundaries. Indeed, the increase in current density indicates a decrease in potential barrier. Finally, we can conclude that Silicon nitride/ P+ N / thin oxide /Silicon Nitride/Silicon oxide multilayer structure can be preferment for photovoltaic applications.
FULL TEXT (PDF): 
195-202

REFERENCES

References: 

[1] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., Vol. 46, No. 12, pp. 5247-5253,
1975.
[2] J. G. E. Gardeniers and H. A. C. Tilmans, “LPCVD silicon-rich silicon nitride films for applications in micromechanics
studies with statistical experimental design,” J. Vac. Sci. Technol. A., 14 (5), Sep/Oct 1996.
[3] K. Coates, S. Morrison, S. Narayanan, “Deposition of silicon nitride to improve the conversion efficiency of
multicrystalline silicon solar cell,” Proceeding of 16th European Photovoltaic Solar Energy conference, Glasgow, p. 1279,
2000.
[4] B. Chatterjee, S. A. Ringel, and R. Hoffman, Jr. 25th IEEE, PVCS, Washington, D.C.96, (1996)179.
[5] N. Benloucif, “Potentialités de films de silicium polycristallin LPCVD destinés à l’étude d’une cellule solaire
multicouches,” Thèse de doctorat, Université Mentourie Constantine, 2011.
[6] B. Ba, M. Kane, J. Sarr, “Modelling recombination current in polysilicon solar cell grain boundaries,” Solar Energy
Material et solar cells, pp. 143- 154, 2003.
[7] Y. Laghla, “Elaboration et caractérisation de couches minces de silicium ploycristallin déposées par LPCVD pour
application photovoltaïque,” Thèse de Doctorat, Université Paul Sabatier de Toulouse, N° 3038, 1998.
[8] O. Schultz, M. Hofmann, S. W. Glunz, G. P. Wileke, “silicon oxide/silicon nitride stack system for 20% efficient silicon
solar cells,” Freiburg, D-79110. 31st IEEE, PVSC Orlando, Florida, 2005.
[9] A. Ricaud, “Photopiles Solaires,” Presses polytechniques et universitaires romandes, Lausane, 1997.
[10] K. Shirasawa, H. Takahashi, Proc 23rd .IEEE. PVSC. Loui Ville 256, 1993.
[11] L. L. Kazmerski, Solid-State Electron.21 (1978)1545.

Thank you for copying data from http://www.arastirmax.com