You are here

EXCITOTOXINS: THEIR ROLE IN HEALTH AND DISEASE

Journal Name:

Publication Year:

DOI: 
10.5958/j.2319-5886.2.3.047
Abstract (2. Language): 
Background : Excitotoxins are a class of substances usually amino acids or their derivatives that normally act as neurotransmitters in brain but in excessive amounts lead to over excitation of neurons leading to a state of exhaustion & death. Over 70 types of excitotoxins have been identified so far and many have a free access to our body in form of taste enhancing food additives like monosodium glutamate, aspartame, sodium casienate etc. They have been implicated for the development of a wide variety of neurological disorders like Alzheimer`s disease, Huntington’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and even for early ageing. Objective: The purpose of this review is to sort out truth about extent of involvement of excitotoxins in neurodegeneration from the massive propaganda against them wherein they have been implicated in almost all disorders of unknown etiology. Method: A comprehensive search strategy was developed incorporating both the peer reviewed, non peer reviewed literature and electronic databases like Medline. These were scrutinized and relevant research papers were examined. Conclusion : There is considerable evidence based research pertaining to the neurodegenerative effect of excitotoxins to the human brain. Yet the autonomous food regulating bodies like FDA refuse to recognize the immediate and long term danger to the public caused by the use of such excitotoxic food additives. Thus only means of protecting oneself from such type of neurological damage is to consume only unprocessed, fresh, whole, organic foodstuffs.
FULL TEXT (PDF): 
648- 659

REFERENCES

References: 

1. Standerst DG, Young AB. Treatment of
central nervous system degenerative
disorders In: Brunton J, Lazo S, Parker KL.
Goodman & Gilman’s The Pharmacological
basis of therapeutics.11th ed. NY:Mc Graw
Hill;2006.p.528.
2. Kandel ER, Schwartz JH, Jessell
TM.Principles of Neural Science.4th ed.
NY:Mc Graw Hill:2000.p.928.
3. Geerts H and Grossberg GT. Pharmacology
of acetylcholinesterase inhibitors and Nmethyl-
D-aspartate receptors for
combination therapy in the treatment of
Alzheimer’s disease. J Clin Pharmacol
2006;46(7):8-16.
4. Beal MF. Excitotoxicity and nitric oxide in
Parkinson’s disease pathogenesis. Ann
Neurol.1998;44(3):110–14.
5. Leigh PN and Meldrum BS. Excitotoxicity
in amyotrophic lateral sclerosis.
Neurology.1996; 47: 221–7.
6. Pitt D, Werner P, and Raine CS. Glutamate
excitotoxicity in a model of multiple
sclerosis. Nature Med. 2000;6:67–70.
7. Miller HP, Levey AI, Rothstein JD,
Tzingounis AV, and Conn PJ. Alterations in
glutamate transporter protein levels in
kindling-induced epilepsy. J Neurochem.
1997;68: 1564–70.
8. Choi DW , Rothman SM. The role of
neurotoxicity in hypoxic ischaemic neuronal
cell death.Annu.Rev.Neurosci,1990;13:171-
82
9. Collingridge GL and Bliss TVP. Memories
of NMDA receptors and LTP. Trends
Neurosci.1995;18:54–56.
10. Gill SS, Veinot J, Mueller R, Kavanagh M,
Rousseaux CG, Pulido OM. Abstracts. P29.
Toxicologic Pathology of glutamate
receptors (GluRs)-an opportunity for
pharmaceutical development. Part II:
Inflammation and lymphoid organs. Toxicol
Pathol.2006;34:119–30.
11. Lipton SA , Rosenberg PA. Excitatory
amino acids as final common pathway for
neurologic disorders.New Engl.J.Med
1994;330:613-22
12. Meldrum BS. Glutamate as a
neurotransmitter in the brain:review of
655
Tadvi NAet al., Int J Med Res Health Sci. 2013;2(3):648-659
physiology and pathology. J Nutr. 2000;130:
1007–15.
13. Saliñska E, Danysz W, and Lazarewicz JW.
The role of excitotoxicity in
neurodegeneration. Folia Neuropathol.
2005;43:322–39.
14. Rousseaux CG. A review of glutamate
receptors II:Pathophysiology & Pathology.
view of glutamate receptors J Toxicol Pathol
2008; 21: 133–73
15. Boldyrev A, Bulygina E, and Makhro A.
Glutamate receptors modulate oxidative
stress in neuronal cells.Neurotox Res.
2004;6: 581–87.
16. Mukherjee PK, DeCoster MA, Campbell
FZ, Davis RJ, and Bazan NG. Glutamate
receptor signaling interplay modulates
stress-sensitive mitogen-activated protein
kinases and neuronal cell death. J Biol
Chem.1999;274: 6493–8.
17. Wallig MA. Morphological manifestations
of toxic cell injury. In: Hand book of
Toxicologic Pathology, 2nd ed. WM
Hascheck, CG Rousseaux, and MA Wallig
(eds). AcademicPress, San Diego.2002.39–
64.
18. Conn PJ and Pin JP. Pharmacology and
functions of metabotrophic receptors. Ann
Rev Pharmacol Toxicol. 1997;37:205–37.
19. Dingledine R, Borges K, Bowie D, and
Traynelis SF. The glutamate receptor ion
channels. Pharmacol Rev. 1999;51: 7–61.
20. Dingledine R and McBain CJ. Excitatory
amino acids transmitters. In: Basic
Neurochemistry. Siegal GJ, Agronoff RW,
Albers BW, and Molinof PB (eds). Raven
Press, NewYork. 1994.367–387.
21. Choi DW. Excitotoxic cell death. J
Neurobiol. 1992;23: 1261–76.
22. Giordano G, White CC, Mohar I, Kavanagh
TJ, and Costa LG. Glutathione levels
modulate domoic acid induced apoptosis in
mouse cerebellar granule cells. Toxicol
Sci.2007;100: 433–444.
23. Lipton SA and Nicotera P. Calcium, free
radicals and excitotoxins in neuronal
apoptosis. Cell Calcium. 1998;23:165–71.
24. Rosenberg PA and Aizenman E. Hundredfold
increase in neuronal vulnerability to
glutamate toxicity in astrocyte poor cultures
of rat cerebral cortex. Neurosci Lett.
1989;103: 162–8.
25. Brown DR. Neurons depend on astrocytes
in a co culture system for protection from
glutamate toxicity. Mol Cell Neurosci.
13;1999: 379–389.
26. Neale JH, Bzdega T, and Wroblewska B.
Nacetylaspartylglutamate:The most
abundant peptide neurotransmitter in the
mammalian central nervous system. J
Neurochem. 2000;75: 443–452.
27. Yuan K. Can’t get enough of umami:
revealing the fifth element of taste. J Young
Invest, December, 2003;9:1-8.
28. Kandel E R, Schwartz J H, Jessell T
M.Principles of Neural Science.4th
ed.NY:Mc Graw Hill:2000.p.284-85
29. Barrett KE, Boitano S, Barman SM, Brooks
HL, Ganong’s review of medical
physiology. 23rd ed.New Delhi.Tata Mc
Graw Hill
30. Pin JP and Duvoisin R. Review:
Neurotransmitter receptorsI: The
metabotropic glutamate receptors: structure
and functions. Neuropharmacology.
1995;34: 1–26.
31. Saugstad JA, Kinzie JM, Mulvihill ER,
Segerson TP, and Westbrook GL. Cloning
and expression of a new member of the L-2-
amino-4-phosphobutyric acid-sensitive class
of metabotropic glutamate receptors. Mol
Pharmacol.1994; 45: 367–72.
32. Platt SR. The role of glutamate in central
nervous system health and disease: A
review. Vet J.2007; 173: 278–86.
33. Endoh T. Characterization of modulatory
effects of postsynaptic metabotropic
glutamate receptors on calcium currents in
rat nucleus tractus solitarius. Brain Res.
2004;102:212–24.
656
Tadvi NAet al., Int J Med Res Health Sci. 2013;2(3):648-659
34. Hack N and Balázs R. Selective stimulation
of excitatory amino acid receptor subtypes
and the survival of granule cells in culture:
effect of quisqualate and AMPA.Neurochem
Int.1994; 25: 235–41.
35. Reynolds JD and Brien JF. Effects of acute
ethanol exposure on glutamate release in the
hippocampus of the fetal and adult guinea
pig. Alcohol. 1994; 11: 259-67.
36. Ikonomidou C, Bosch F, Miksa M, Bittigau
P, Vöckler J, Dikranian K, Tenkova TI,
Stefovska V, Turski L, and Olney JW.
Blockade of NMDA receptors and
apoptoticneurodegeneration in the
developing brain. Science. 1999;283:70–74.
37. Moriyama Y and Yamamoto A.
Glutamatergic chemical transmission: Look!
here, there, and anywhere. J
Biochem.2004;135: 155–63.
38. Lam HM, Chiu J, Hsieh MH, Meisel L,
Oliveira IC, Shin M,and Coruzzi G.
Glutamate-receptor genes in plants.
Nature.1998;396: 125–26.
39. Blaylock RL. Excitotoxins,
neurodegeneration & neurodevelopment.
Medical Sentinel,1999;4(6).
40. Segura Torres JE, Chaparro-Huerta V,
Rivera CervantresMC, Montes-Gonzalez R,
Flores Soto ME, and Beas-ZarateC.
Neuronal cell death due to glutamate
excitotocity is mediated by p38 activation in
the rat cerebral cortex.Neurosci Lett.
2006;403: 233–38.
41. Sanabria ER, Pereira MF, Dolnikoff MS,
Andrade IS,Ferreira AT, Cavalheiro EA
etal., Defficit in hippocampal long-term
potentiation in monosodium glutamatetreated
rats. Brain Res Bull. 2002;59: 47–51.
42. Olvera-Cortes E, Lopez-Vazquez MA,
Beas-Zarate C, and Gonzalez-Burgos I.
Neonatal exposure to monosodium
glutamate disrupts place learning ability in
adult rats.Pharmacol Biochem Behav. 2005;
82: 247–251.
43. Hlinak Z, Gandalovicova D, and Krejci I.
Behavioral deficits in adult rats treated
neonatally with glutamate. Neurotoxicol
Teratol. 2005;27: 465–73.
44. Kiss P, Tamas A, Lubics A, Szalai M,
Szalontay L, LengvariI, and Reglodi D.
Development of neurological reflexes and
motor coordination in rats neonatally treated
with monosodium glutamate. Neurotox Res.
2005;8: 235–44.
45. Racz B, Gallyas F Jr, Kiss P, Toth G, Hegyi
O, Gasz B, Borsiczky B, Ferencz A, etal.,
The neuroprotective effects of PACAP in
monosodium glutamate-induced retinal
lesion involve inhibition of proapoptotic
signaling pathways. Regul Pept.
2006;15:20–6.
46. Ortiz GG, Bitzer-Quintero OK, Zarate CB,
Rodriguez-Reynoso S, Larios-Arceo F,
Velazquez-Brizuela IE,Pacheco-Moises F,
and Rosales-Corral SA. Monosodium
glutamate-induced damage in liver and
kidney: a morphological and biochemical
approach. Biomed Pharmacother. 2006;60:
86–91.
47. Aspartame Information Center. Available on
http://www.aspartame.org, 2004.
48. Butchko HH, Stargel WW, Comer CP..
Preclinical safety evaluation of aspartame.
Regul Toxicol Pharmacol 2002; 35:S7-S12.
49. Ranney RE, Opperman JA, Maldoon E..
Comparative metabolism of aspartame in
experimental animals and humans.Toxicol
Environ Health 1976; 2: 441-51.
50. Soffritti M, Belpoggi F, Esposti DD.
Aspartame induces lymphomasand
leukaemias in rats. Eur J Oncol 2005;10:
107-16.
51. Soffritti M, Belpoggi F, Esposti DD. First
experimental demonstration of the
multipotential carcinogenic effects of
aspartame administered in the feed to
Sprague-Dawley rats. Environ Health
Perspect 2006;114:379 –85.
52. Chandrasekaran A, Ponnambalam G, and
Kaur C. Domoic acid-induced neurotoxicity
in the hippocampus of adult rats. Neurotox
Res. 2004;6: 105–17.
657
Tadvi NAet al., Int J Med Res Health Sci. 2013;2(3):648-659
53. Scallet AC, Schmued LC, and Johannessen
JN.Neurohistochemical biomarkers of
marine neurotoxicant, domoic acid.
Neurotoxicol Teratol. 2005;27: 745–52.
54. Meldrum BS. Glutamate as a
neurotransmitter in the brain:review of
physiology and pathology. J Nutr. 2000;130:
1007–15.
55. Ikonomidou C and Turski L. Prevention of
trauma-induced neurodegeneration in infant
and adult rat brain: Glutamate antagonists.
Metab Brain Dis. 1996;11: 125–141.
56. Spencer PS, Ludolph A, Dwivedi MP, Roy
DN, Hugon J,and Schaumburg HH.
Lathyrism: evidence for role of the
neuroexcitatory aminoacid BOAA. Lancet.
1986;2(8525): 1066–67.
57. Spencer PS, Ohta M, and Palmer VS. Cycad
use and motor neuron disease in Kii
peninsula of Japan. Lancet. 1987;197:1462–
63.
58. Weiss JH and Choi DW. β-N-Methylamino-
L-alanine neurotoxicity: requirement for
bicarbonate as a cofactor.Science. 1988;241:
973–75.
59. Alexi T, Hughes PE, Faull RL, and Williams
CE. 3-Nitroproprionic acid’s lethal triplet:
cooperative pathways to neurodegereration.
Neuroreport.1998; 9: 57–64.
60. Allen JW, Shanker G, Tan KH, and
Aschner M. The consequences of
methylmercury exposure on interactive
functions between astrocytes and
neurons.Neurotoxicology.2002;23:755–59.
61. Albrecht J and Norenberg MD. Glutamine: a
Trojan horse in ammonia neurotoxicity.
Hepatology. 2006: 788–794.
62. Padberg S, Schumm-Draeger PM, Petzoldt
R, Becker F, Federlin K.[The significance of
A1 and A2 antibodies against beta-casein in
type-1diabetes mellitus]. Dtsch Med
Wochenschr 1999;124(50):1518-21.
63. Hill J, Crawford RA, Boland MJ. Milk and
consumer health: a review ofthe evidence
for a relationship between the consumption
of beta-caseinA1 with heart disease and
insulin-dependant diabetes mellitus. Proc
NZ Soc Animal Prod 2002;62:111-14.
64. Knivsberg AM, Reichelt KL, Hoien T,
Nodland M. A randomised,controlled study
of dietary intervention in autistic syndromes.
Nutr Neurosci 2002;5(4):251-61
65. Lacomblez L, Bensimon G, Leigh PN,
Guillet P, and Meininger V. Dose-ranging
study of riluzole in amyotrophic sclerosis.
Lancet. 1996;347: 1425–31.
66. Cid C, Alvarez-Cermeno JC, Regidor I,
Salinas M, andAlcazar A. Low
concentrations of glutamate induce
apoptosis in cultured neurons: implications
for amyotrophic lateral sclerosis. J Neurol
Sci. 2003;206: 91–95.
67. Corona JC and Tapia R. Ca(2+)-permeable
AMPA receptors and intracellular Ca(2+)
determine motor neuron vulnerability in rat
spinal cord in vivo. Neuropharmacol.
2007;52: 1219–28.
68. Hirata A, Nakamura R, Kwak S, Nagata N,
and Kamakura K. AMPA receptor-mediated
slow neuronal death in the rat spinal cord
induced by long-term blockade of glutamate
transporters with THA. Brain Res.
1997;771: 37–44.
69. Rothstein JD. Neurobiology. Bundling up
excitement.Nature. 2000;407: 141–42.
70. Gusella JF, Wexler NS, and Conneally PM.
A polymorphic DNA marker genetically
linked to Huntington’s disease.Nature.
1983;306: 234–238.
71. Goldberg YP, Kalchman MA, Metzler M,
Nasir J, Zeisler J,Graham R, Koide HB,
O’Kusky J, Sharp AH, Ross CA, Jirik F, and
Hayden MR. Absence of disease phenotype
and intergenerational stability of the CAG
repeat in transgenic mice expressing the
human Huntington disease transcript.Hum
Mol Genet.1996; 5: 177–85.
72. Che YH, Tamatani M, and Tohyama M.
Changes in Mrna for post-synaptic density-
95 (PSD-95) and carboxy-terminal PDZ
ligand of neuronal nitric oxide synthase
658
Tadvi NAet al., Int J Med Res Health Sci. 2013;2(3):648-659
following facial nerve transection. Brain Res
Mol Brain Res. 2000;76: 325–35.
73. Savinainen A, Garcia EP, and Dorow D.
Kainate receptor activation induces mixed
lineage kinase-mediated cellular signaling
cascades via post-synaptic density protein
95. J Biol Chem. 2001;276: 11382–6.
74. Sattler R, Charlton MP, and Hafner M.
Distinct influx pathways, not calcium load,
determine neuronal vulnerability to calcium
neurotoxicity. J Neurochem. 1998;71:2349–
64.
75. Schmitz D, Frerking M, and Nicoll RA.
Synaptic activation of presympathetic
kainate receptors on hippocampal mossy
fiber synapses. Neuron.2000;27: 327–38.
76. Baker DA, Xi ZX, Shen H, Swanson CJ,
and Kalivas PW. The origin and neuronal
function of in vivo nonsynaptic glutamate. J
Neurosci.2002;22: 9134–41.
77. Reisberg B, Doody R, Stöffler A, Schmitt F,
Ferris S, and Möbius HJ. Memantine in
moderate-to-severe Alzheimer’s disease. N
Engl J Med. 2003;348: 1333–41.
78. Srinivasan R, Sailasuta N, Hurd R, Nelson
S, and Pelletier D. Evidence of elevated
glutamate in multiple sclerosis using
magnetic resonance spectroscopy. Brain.
2005;128: 1016–25.
79. Plaut GS. Effectiveness of amantadine in
reducing relapses in multiple sclerosis. J
Royal Soc Med. 1987;80: 91–3.
80. Pitt D, Nagelmeier IE, Wilson HC, and
Raine CS. Glutamate uptake by
Oligodendrocytes Implications for
excitotoxicity in multiple sclerosis. Neurol.
2003;61: 1113–20.
81. Beal MF. Excitotoxicity and nitric oxide in
Parkinson’s disease pathogenesis. Ann
Neurol.1998; 44(3 Suppl 1) 110–14.
82. Greenamyre JT. Glutamatergic influences
on the basal ganglia. Clin Neuropharmacol.
2001;24: 65–70.
83. Sonsalla PK, Albers DS, and Zeevalk GD.
Role of glutamate in neurodegeneration of
dopamine neurons in several animal models
of Parkinsonism. Amino Acids.1998; 14:
69–74.
84. Buisson A and Choi DW. The inhibitory
mGluR agonist, S-4-carboxy-3-hydroxy
phenylglycine selectively attenuates NMDA
neurotoxicityand oxygen-glucose
deprivationinduced neuronal death.
Neuropharmacol. 1995;34: 1081–87.
85. Buisson A, Yu SP, and Choi DW. DCG-IV
selectively attenuates rapidly triggered
NMDA-induced neurotoxicity in cortical
neurons. Eur J Neurol.1996;8: 138–43.
86. Fitzjohn SM, Irving AJ, Palmer MJ, Harvey
J, Lodge D, and Collingridge GL. Activation
of Group I mGluRs potentiates NMDA
responses in rat. Neurosci Lett.1996; 203:
211–3.
87. Watkins J and Collingridge G.
Phenylglycine derivatives as antagonists of
metabotropic glutamate receptors. Trends
Pharmacol Sci. 1999;15: 333–42.
88. Watkins JC and Jane DE. The glutamate
story. Br J Pharmacol. 2006;147(Suppl 1):
S100–108.
89. Meldrum BS. Protection against ischaemic
neuronal damage by drugs act ing on exci
tatory neurotransmission.Cerebrovasc Brain
Metab Rev. 2;1990: 27–57.
90. Alix JJ. Recent biochemical advances in
white matter ischaemia. Eur Neurol.
2006;56: 74–77.
91. Goldberg MP and Ransom BR. New light
on white matter.Stroke. 2003;34: 330–32.
92. Gressens P, Spedding M, Gigler G, Kertesz
S, Villa P,Medja F, Williamson T, Kapus G,
Levay G, Szenasi G,Barkoczy J, and
Harsing LG Jr. The effects of AMPA
receptor antagonists in models of stroke and
neurodegeneration. Eur J Pharmacol.
2005;519: 58–67.
93. Soundarapandian MM, Tu WH, Peng PL,
Zervos AS, and Lu Y. AMPA receptor
subunit GluR2 gates injurious signals in
ischemic stroke. Mol Neurobiol.2005; 32:
145–55.
659
Tadvi NAet al., Int J Med Res Health Sci. 2013;2(3):648-659
94. Endres M and Dirnagl U. Ischemia and
stroke. Adv Exp Med Biol. 2002;5132: 455–
73.
95. Swanson RA, Ying W, and Kauppinen TM.
Astrocyte influences on ischemic neuronal
death. Curr Mol Med. 2004 4:193–205.
96. Miller HP, Levey AI, Rothstein JD,
Tzingounis AV, and Conn PJ. Alterations in
glutamate transporter protein levelsin
kindling-induced epilepsy. J Neurochem.
1997;68: 1564–70.
97. Meldrum BS and Chapman AG. Excitatory
amino acid receptors and antiepileptic drug
development. In: Advances in Neurology.
AV Delgado-Escueta, WA Wilson, RW
Olsen, and RJ Porter (eds.). Lippincott
Williams & Wilkins,Philadelphia. 1999;79.
965–78.
98. Araque A, Sanzgiri RP, Parpura V, and
Haydon PG.Calcium elevation in astrocytes
causes an NMDA receptor dependent
increase in the frequency of miniature
synaptic currents in cultured hippocampal
neurons. J Neurosci.1998; 18:6822–29.
99. Newman EA and Zahs KR. Modulation of
neuronal activity by glial cells in the retina.
J Neurosci. 1998;18: 4022–28.
100. D’Ambrosio R. Does glutamate released by
astrocytes cause focal epilepsy? Epilepsy
Curr. 2006;6: 173–76.
101. Penfield W. The mechanisms of cicatricial
contraction in the brain. Brain. 1927;50:
499–517.

Thank you for copying data from http://www.arastirmax.com