You are here

Haemophilus influenzae Strains in Tunisian Children

Journal Name:

Publication Year:

Abstract (2. Language): 
Background: Haemophilus influenzae, a major pathogen causing respiratory tract infections and meningitis, is becoming increasingly resistant to narrow spectrum penicillin. Investigating the reasons for this resistance is challenging. Methods: The sequences of the ftsI gene, encoding the transpeptidase domain of penicillin binding protein (PBP3), were determined for 44 strains of Haemophilus influenzae with reduced susceptibility to β-lactam antibiotics. Strains, isolated from children, were analyzed for genetic relationship by pulsed-field gel electrophoresis (PFGE). Results: Sequence analysis of the ftsI gene revealed different mutations. We used this polymorphism to classify the different strains into three groups: (I (n=3), II (n=36, including H. influenzae ATCC 49247), this group was divided into four subgroups and III (n=5)). In each group various substitutions were observed. Conclusion: The increasing number of Haemophilus influenzae strains with reduced susceptibility to β-lactam due to mutations in the ftsI gene, is becoming a serious health issue in Tunisia. The resistance to β-lactam was observed in both strains that produce β-lactamase and those that do not. The level of resistance is remarkably high in our country.
133
142

REFERENCES

References: 

[1] Sadeghi-Aval, Pouya, et al. “Emergence of non-serotype b encapsulated Haemophilus influenzae as a cause
of pediatric meningitis in northwestern Ontario.” Canadian Journal of Infectious Diseases and Medical
Microbiology 24.1 (2013): 13-16.
[2] Kuvat, Nuray, et al. “TEM-1 and ROB-1 Presence and Antimicrobial Resistance in Haemophilus influenzae
Strains, Istanbul, Turkey.” Southeast Asian Journal of Tropical Medicine and Public Health 46.2 (2015): 254.
[3] Søndergaard, Annette, and Niels Nørskov-Lauritsen. “Contribution of PBP3 Substitutions and TEM-1, TEM-
15, and ROB-1 Beta-Lactamases to Cefotaxime Resistance in Haemophilus influenzae and Haemophilus
parainfluenzae.” Microbial Drug Resistance 22.4 (2016): 247-252.
[4] Tristram, Stephen G., Rachael Littlejohn, and Richard S. Bradbury. “blaROB-1 presence on pB1000 in
Haemophilus influenzae is widespread, and variable cefaclor resistance is associated with altered penicillinbinding
proteins.” Antimicrobial agents and chemotherapy 54.11 (2010): 4945-4947.
[5] Skaare, Dagfinn, et al. “Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillinbinding
protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006 to 2013.” (2014).
Eurosurveillance 2014; 19, (49).
[6] Markowitz, S. M. “Isolation of an ampicillin-resistant, non-beta-lactamase-producing strain of Haemophilus
influenzae.” Antimicrobial agents and chemotherapy 17.1 (1980): 80-83.
Sabrine, et al. Int J Med Res Health Sci 2017, 6(11): 133-142
141
[7] Offit, Paul A., Joseph M. Campos, and Stanley A. Plotkin. “Ampicillin-resistant, β-lactamase-negative
Haemophilus influenzae type b.” Pediatrics 69.2 (1982): 230-232.
[8] Bell, Sydney M, and Dale Plowman. “Mechanisms of ampicillin resistance in Haemophilus influenzae from
respiratory tract.” The Lancet 315.8163 (1980): 279-280.
[9] Mendelman, Po M., et al. “Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus
influenzae.” Antimicrobial Agents and Chemotherapy 26.2 (1984): 235-244.
[10] Tristram, Stephen, Michael R. Jacobs, and Peter C. Appelbaum. “Antimicrobial resistance in Haemophilus
influenzae.” Clinical Microbiology Reviews 20.2 (2007): 368-389.
[11] Okabe, Tadashi, et al. “An amino acid substitution in PBP-3 in Haemophilus influenzae associate with the
invasion to bronchial epithelial cells.” Microbiological Research 165.1 (2010): 11-20.
[12] Minami, Masaaki, et al. “Clinical Characteristics of Haemophilus influenzae at General Hospital in the Central
Region of Japan.” Journal of Biosciences and Medicines 4.06 (2016): 18.
[13] Clairoux, N., et al. “Molecular basis of the non-beta-lactamase-mediated resistance to beta-lactam antibiotics
in strains of Haemophilus influenzae isolated in Canada.” Antimicrobial Agents and Chemotherapy 36.7 (1992):
1504-1513.
[14] Ubukata, Kimiko, et al. “Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam
resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae.” Antimicrobial Agents and
Chemotherapy 45.6 (2001): 1693-1699.
[15] Dabernat, Henri, et al. “Diversity of β-lactam resistance-conferring amino acid substitutions in penicillin-binding
protein 3 of Haemophilus influenzae.” Antimicrobial Agents and Chemotherapy 46.7 (2002): 2208-2218.
[16] Kilian, Mogens. “A taxonomic study of the genus Haemophilus, with the proposal of a new
species.” Microbiology 93.1 (1976): 9-62.
[17] Jorgensen, James H., et al. “Improved medium for antimicrobial susceptibility testing of Haemophilus
influenzae.” Journal of Clinical Microbiology 25.11 (1987): 2105-2113.
[18] Ubukata K, Chiba N, Hasegawa K, Shibasaki Y, and Shiro H. Abstr. 40th Intersci. Conf. Antimicrob. Agents
Chemother., abstr. 894, 2000.
[19] Tenover, Fred C., et al. “Development of PCR assays to detect ampicillin resistance genes in cerebrospinal fluid
samples containing Haemophilus influenzae.” Journal of Clinical Microbiology 32.11 (1994): 2729-2737.
[20] De l’Antibiogramme, CA-SFM Comité. “de la Société Française de Microbiologie: Communiqué 2006 (Edition
de janvier 2006).”
[21] Smaoui H, Kechrid A. Etude de souches de Heamophilus influenzae isolées à l’hôpital d’enfants de Tunis en
période prévaccinale (1999-2002). Med. Maladies. Infect 2006 36: 364-368.
[22] Zarei, Adi Essam, Hussein A. Almehdar, and Elrashdy M. Redwan. “Hib vaccines: past, present, and future
perspectives.” Journal of Immunology Research 2016 (2016).
[23] Oueslati, S., et al. “Étude de la résistance aux β-lactamines et des marqueurs moléculaires chez 157 souches
d’Haemophilus influenzae isolées chez l’enfant à Tunis.” Canadian Journal of Microbiology 55.5 (2009): 515-519.
[24] Mzilem, Sabrine, et al. “Haemophilus influenzae strains in children: increasing resistance to beta-lactam
antibiotics.” Int J Microbiol Immunol Res 3 (2015): 084-089.
[25] CNRH “Centre National de Référence des Haemophilus influenzae.” Rapport (2011).
[26] Barbosa, Ana Raquel, et al. “Polymorphism in ftsI gene and β-lactam susceptibility in Portuguese Haemophilus
influenzae strains: clonal dissemination of β-lactamase-positive isolates with decreased susceptibility to
amoxicillin/clavulanic acid.” Journal of Antimicrobial Chemotherapy 66.4 (2011): 788-796.
[27] Skaare, Dagfinn, et al. “Multilocus sequence typing and ftsI sequencing: a powerful tool for surveillance of
penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae.” BMC
Microbiology 14.1 (2014): 131.
Sabrine, et al. Int J Med Res Health Sci 2017, 6(11): 133-142
142
[28] Kishii, Kozue, et al. “Diverse mutations in the ftsI gene in ampicillin-resistant Haemophilus influenzae isolates
from pediatric patients with acute otitis media.” Journal of Infection and Chemotherapy 16.2 (2010): 87-93.
[29] Park, Chulmin, et al. “Genetic diversity of the ftsI gene in β-lactamase-nonproducing ampicillin-resistant and
β-lactamase-producing amoxicillin-/clavulanic acid-resistant nasopharyngeal Haemophilus influenzae strains
isolated from children in South Korea.” Microbial Drug Resistance 19.3 (2013): 224-230.
[30] Tsang, Raymond SW, et al. “Laboratory characterization of invasive Haemophilus influenzae isolates from
Nunavut, Canada, 2000–2012.” International Journal of Circumpolar Health 75.1 (2016): 29798.

Thank you for copying data from http://www.arastirmax.com