You are here

MICROBUBBLES AS ULTRASOUND CONTRASTING AGENTS AND CURRENT CLINICAL APPLICATIONS: A REVIEW

Journal Name:

Publication Year:

Abstract (2. Language): 
Micro bubbles are small spherical type of bubble which consists of a gas and have size range of usually 1-100 micrometer. microbubble has increased the diagnostic sensitivity and specificity of Ultra sound Contrasting technique thus widening its clinical applications. Ultrasound imaging is clinically established for routine screening examinations of breast, abdomen, neck and other soft tissues, as well as for therapy monitoring. Microbubbles as vascular contrast agents improve the detection and characterization of cancerous lesions, inflammatory processes, and cardiovascular pathologies. The third generation of ultrasound contrast agents consist of sulphur hexafluoride microbubbles encased in a phospholipid shell. Taking advantage of the excellent sensitivity and specificity of ultrasound for microbubble detection, molecular imaging can be realized by binding anti other targeting moieties to microbubble surfaces. Molecular microbubbles directed against various targets such as vascular endothelial growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, selectins, and integrins were developed and were shown in preclinical studies to be able to selectively bind to tumor blood vessels and atherosclerotic plaques. Currently, microbubble formulations targeted to angiogenic vessels in prostate cancers are being evaluat on the relevant materials, the bioeffects, early successes with gene and drug delivery, and potential clinical applications are reviewed. Ultrasound imaging is widely used worldwide principally because it is cheap, easily available and contains no exposure to ionizing radiation.
FULL TEXT (PDF): 
273-305

REFERENCES

References: 

1. Bertrand N, Leroux JC. (2011). "The
journey of a drug carrier in the body: an
anatomo-physiological perspective". Journal
of Controlled Release. Doi:
10.1016/j.jconrel.2011.09.098
2. Scott, Robert C; Crabbe, Deborah;
Krynska, Barbara; Ansari, Ramin; Kiani,
Mohammad F (2008). "Aiming for the heart:
targeted delivery of drugs to diseased
cardiac tissue". Expert Opinion on Drug
Delivery 5 (4): 459–70. Doi:
10.1517/17425247.5.4.459.
3. Torchilin VP. (2006)Adv Drug Deliv Rev.
2006 Dec 1; 58(14):1532-55.
4. Cobleigh, M; Langmuir, VK; Sledge, GW;
Miller, KD; Haney, L; Novotny, WF;
Reimann, JD; Vassel, A (2003). "A phase I/II
dose-escalation trial of bevacizumab in
previously treated metastatic breast
cancer". Seminars in Oncology 30 (5 Suppl
16): 117–
24. Doi:10.1053/j.seminoncol.2003.08.013.
5. Seidman, A.; Hudis, C; Pierri, MK; Shak,
S; Paton, V; Ashby, M; Murphy, M; Stewart,
SJ et al. (2002). "Cardiac Dysfunction in the
Trastuzumab Clinical Trials
Experience". Journal of Clinical
Oncology 20(5): 1215–
21. Doi:10.1200/JCO.20.5.1215. PMID 1187
0163.
6. Rajesh Patel; Microbubble: An
ultrasound contrast agent in molecular
imaging, Pharma Times, May 2008; Vol. 40;
15.
7. DeepikaMaliwal; Microbubbles Contrast
Agents Using Ultrasound; Research Journal
of Pharmacy and Technology; Vol. 1; issue
03; July-Sept. 2008.
8. Eniola A.O. and Hammer D.A.; In vitro
characterization of leukocyte mimetic for
targeting therapeutics to the endothelium
using two receptors; Biomaterials; 2005;
Vol.26; 7136-44.
9. Eniola A.O., Willcox P.J. and Hammer
D.A.; Interplay between rolling and firm
adhesion elucidated with a cell-free system
Review Article ISSN: 2277-8713
Sowmya Gabbula, IJPRBS, 2013; Volume 2(1): 273-305 IJPRBS
Available Online At www.ijprbs.com
engineered with two distinct receptorligand
pairs; Biophys. J.; 2003; 85; 2720-31.
10. Christiansen C, Kryvi H, Sontum PC,
Skotland T. Biotechnology and Applied
Biochemistry. 1994; 19: 307–320
11. Myrset AH, Nicolaysen H, Toft K,
Christiansen C, Skotland T. Biotechnology
and Applied Biochemistry. 1996; 24: 145–
153.
12. Grinstaff MW, Suslick KS.
ProcNatlAcadSci U S A. 1991; 88: 7708–
7710.
13. Dayton PA, Morgan KE, Klibanov AL,
Brandenburger GH, Ferrara KW. IEEE
Transactions on Ultrasonics Ferroelectrics
and Frequency Control.1999; 46: 220–232.
14. Podell S, Burrascano C, Gaal M, Golec B,
Maniquis J, Mehlhaff P. Biotechnology and
Applied Biochemistry. 1999; 30: 213–223.
15. D’Arrigo JS. ‘Stable Gas-in-Liquid
Emulsions: Production in Natural Waters
and Artificial Media’. New York, NY: Elsevier
Science Pub. Co; 1986.
16. Notter RH, Wang ZD. Reviews in
Chemical Engineering.1997; 13: 1–118.
17. Pattle RE. Nature.1955; 175: 1125–
1126.
18. Verder H, Ebbesen F, Linderholm B,
Robertson B, Eschen C, Arroe M, Lange A,
Grytter C, Bohlin K, Bertelsen A, Danish-
Swedish G. Multicentre Study.
ActaPaediatr.2003; 92: 728–733.
19. Bloch SH, Wan M, Dayton PA, Ferrara
KW. Applied Physics Letters. 2004; 84: 631–
633
20. Epstein PS, Plesset MS. J Chem Phys.
1950; 18: 1505–1509.
21. Cavalieri F, El Hamassi A, Chiessi E,
Paradossi G. Langmuir. 2005; 21: 8758–
8764.
22. Singhal S, Moser CC, Wheatley MA.
Langmuir. 1993; 9: 2426–2429.
23. Wang WH, Moser CC, Wheatley MA.
Journal of Physical Chemistry.1996; 100:
13815–13821.
24. Shchukin DG, Kohler K, Mohwald H,
Sukhorukov GB. AngewChemInt Ed. 2005;
44: 3310–3314.
Review Article ISSN: 2277-8713
Sowmya Gabbula, IJPRBS, 2013; Volume 2(1): 273-305 IJPRBS
Available Online At www.ijprbs.com
25. Borden MA, Caskey CF, Little E, Gillies
RJ, Ferrara KW. Langmuir. 2007; 23: 9401–
9408.
26. Lentacker I, De Geest BG,
Vandenbroucke RE, Peeters L, Demeester J,
De Smedt SC, Sanders NN. Langmuir. 2006;
22: 7273–7278.
27. Klibanov A.L.; Targetted delivery of gas
filled microspheres, contrast agents for
ultrasound imaging : Adv. Drug Delivery
Review; 1999; 37; 139-157.
28. Klibanov A.L.; Ligand carrying gas filled
microbubble : Ultrasound contrast agents
for targeted molecular imaging; Bioconjug.
Chem.; Vol.16; 2005; 9-17.
29. Lindner J.R.; Microbubbles in medical
imaging: Current applications and future
directions, Nat Rev. Drug Discovery; Vol.3;
2004; 527-32.
30. McCulloch M.C., Gresser S., Moos J.;
Ultrasound contrast physics: A series on
contrast echocardiography; article 3; J Am
SocEchocardiogy; 13; 959-67
31. Verma IM, Somia N: Gene therapypromises,
problems and prospects. Nature
1997, 389: 239-242.
32. Newman KD, Dunn PF, Owens JW,
Schulick AH, Virmani R, Sukhova G, et al.:
Adenovirus-mediated gene transfer into
normal rabbit arteries results in prolonged
vascular cell activation, inflammation, and
neointimal hyperplasia. J Clin Invest 1995,
96: 2955-2965.
33. Felgner PL: Nonviral strategies for gene
therapy. Sci Am 1997, 276: 102-106.
34. Porter TR, Iversen PL, Li S, Xie F:
Interaction of diagnostic ultrasound with
synthetic oligonucleotide labeled
perfluorocarbon-exposed sonicated
dextrose albumin microbubbles.
35. Taniyama Y, Tachibana K, Hiraoka K,
Namba T, Yamasaki K, Hashiya N, et al.:
Local delivery of plasmid DNA into rat
carotid artery using ultrasound. J Am
CollCardiol2003, 42: 301-308.
36. Shohet RV, Chen S, Zhou YT, Wang Z,
Meidell RS, Unger RH, et al.:
Echocardiographic destruction of albumin
microbubbles directs gene delivery to the
myocardium. Circulation 2000, 101: 2554-
2556.
37. Annemieke van Wamel, KlazinaKooim ;
Vibrating microbubbles poking individual
Review Article ISSN: 2277-8713
Sowmya Gabbula, IJPRBS, 2013; Volume 2(1): 273-305 IJPRBS
Available Online At www.ijprbs.com
cells : Drug transfer into cells via
sonoporation ; Journal of Controlled
Release;Vol.112; 2006 Pg 149.
38. Ka-Yun &T.O.Matsunga; Ultrasond
Mediated drug delivery; Wiley Publications.
39. Lindner J.R., Klibanov A.L., and Ley K.;
Targetting inflammation, In: Biomedical
aspects of drug targeting; 2002; 149-172.
40. Ying-Zheng Zhao Cui-Tao Lu; Factors
that affect the efficiency of antisense
oligodeoxyribonucleotide transfection by
insonated gas-filled lipid microbubbles; J
Nanopart Res (2008) 10:449–454.
41. Skyba DM, Price RJ, Linka AZ, Skalak TC,
Kaul S: Direct in vivo visualization of
intravascular destruction of microbubbles
by ultrasound and its local effects on tissue.
Circulation 1998, 98: 290-293.
42. Price RJ, Skyba DM, KAUL S ,Skalak TC:
Delivery of colloidal particles and red blood
cells to tissue through micro vessel ruptures
created by targeted microbubble
destruction with ultrasound. Circulation
1998, 98: 1264-1267.
43. Porter TR, Iversen PL, Li S, Xie F:
Interaction of diagnostic ultrasound with
synthetic oligonucleotide labeled
perfluorocarbon-exposed sonicated
dextrose albumin microbubbles. J
Ultrasound Med 1996, 15: 577-584.
44. Main ML, Grayburn PA: Clinical
applications of transpulmonary contrast
echocardiography. Am Heart J 1999, 137:
144-153.
45. Wei K, Skyba DM, Firschke C, Jayaweera
AR, Lindner JR, Kaul S: Interactions between
microbubbles and ultrasound: in vitro and
in vivo observations. J Am CollCardiol1997,
29: 1081-1088.
46. Unger EC, McCreery TP, Sweitzer RH,
Caldwell VE, Wu Y: Acoustically active
lipospheres containing paclitaxel: a new
therapeutic ultrasound contrast agent.
Invest Radiol1998, 33: 886-892.
47. Taniyama Y, Tachibana K, Hiraoka K,
Namba T, Yamasaki K, Hashiya N, et al.:
Local delivery of plasmid DNA into rat
carotid artery using ultrasound. Circulation
2002, 105: 1233-1239.
48. Chen S, Shohet RV, Bekeredjian R,
Frenkel P, Grayburn PA: Optimization of
ultrasound parameters for cardiac gene
delivery of adenoviral or plasmid
Review Article ISSN: 2277-8713
Sowmya Gabbula, IJPRBS, 2013; Volume 2(1): 273-305 IJPRBS
Available Online At www.ijprbs.com
deoxyribonucleic acid by ultrasoundtargeted
microbubble destruction. J Am
CollCardiol2003, 42: 301-308.
49. Shohet RV, Chen S, Zhou YT, Wang Z,
Meidell RS, Unger RH, et al.:
Echocardiographic destruction of albumin
microbubbles directs gene delivery to the
myocardium. Circulation 2000, 101: 2554-
2556.
50. Mukherjee D, Wong J, Griffin B, Ellis SG,
Porter T, Sen S, et al.: Ten-fold
augmentation of endothelial uptake of
vascular endothelial growth factor with
ultrasound after systemic administration. J
Am CollCardiol2000, 35: 1678-1686.
51. Villanueva FS, Jankowski RJ, Manaugh C,
Wagner WR: Albumin microbubble
adherence to human coronary
endothelium: implications for assessment
of endothelial function using myocardial
contrast echocardiography. J Am
CollCardiol1997, 30: 689-693.
52. Miller MW: Gene transfection and drug
delivery. Ultrasound Med Biol2000, 26
Suppl 1:S59-S62. 48) Unger EC, McCreery
TP, Sweitzer RH, Caldwell VE, Wu Y:
Acoustically active lipospheres containing
paclitaxel: a new therapeutic ultrasound
contrast agent. Invest Radiol1998, 33: 886-
892.
53. Fritz TA, Unger EC, Suthrland G, Sahn D:
Phase I clinical trials of MRX-115. A new
ultrasound contrast agent.Invest
Radiol1997, 32: 735-740.
54. Lindner JR, Song J, Christiansen J,
Klibanov AL, Xu F, Ley K: Ultrasound
assessment of inflammation and renal
tissue injury with microbubbles targeted to
P-selectin. Circulation 2001, 104: 2107-
2112.
55. Weller GE, Lu E, Csikari MM, Klibanov
AL, Fischer D, Wagner WR, et al.:
Ultrasound imaging of acute cardiac
transplant rejection with microbubbles
targeted to intercellular adhesion molecule-
1. Circulation 2003, 108: 218-224.
56. Chomas JE, Dayton P, Allen J, Morgan K,
Ferrara KW: Mechanisms of contrast agent
destruction. IEEE.Trans
UltrasonFerroelectrFreq Control 2001, 48:
232-248.
57. Chomas JE, Dayton P, May D, Ferrara K:
Threshold of fragmentation for ultrasonic
Review Article ISSN: 2277-8713
Sowmya Gabbula, IJPRBS, 2013; Volume 2(1): 273-305 IJPRBS
Available Online At www.ijprbs.com
contrast agents. J Biomed Opt 2001, 6:141-
150.
58. Song J, Chappell JC, Qi M, VanGieson EJ,
Kaul S, Price RJ: Influence of injection site,
micro vascular pressure and ultrasound
variables on microbubble-mediated delivery
of microspheres to muscle. J Am
CollCardiol2002, 39: 726-731.
59. Deng CX, Sieling F, Pan H, Cui J:
Ultrasound-induced cell membrane
porosity. Ultrasound Med Biol2004, 30:
519-526.
60. Porter TR, Hiser WL, Kricsfeld D,
Deligonui U, Xie F, Iversen P, et al.:
Inhibition of carotid artery neointimal
formation with intravenous microbubbles.
Ultrasound Med Biol2001, 27: 259-265.
61. Porter TR, Knnap D, Venneri L,
Oberdorfer J, L of J, Iversen P, et al.:
Increased suppression of intracoronary cmyc
protein synthesis within the stent or
balloon injury site using an intravenous
microbubble delivery system containing
antisense to c-myc: comparison with direct
intracoronary injection. J Am
CollCardiol2003, 41: 431A.
62. Unger EC, Hersh E, Vannan M,
Matsunaga TO, McCreery T. Local drug and
gene delivery through microbubbles.
ProgCardiovasc Dis 2001;44(1):45e54.
63. Skyba DM, Price RJ, Linka AZ, Skalak TC,
Kaul S. Direct in vivo visualization of
intravascular destruction of microbubblesby
ultrasound and its local effects on tissue.
64. Circulation 1998;98(4):290e3.
65. Price RJ, Skyba DM, Kaul S, Skalak TC.
Delivery of colloidal particles and red blood
cells to tissue through microvesselruptures
created by targeted microbubble
destruction with
66. ultrasound. Circulation
1998;98(13):1264e7.
67. Lawrie A, Brisken AF, Francis SE, Tayler
DI, Chamberlain J, Crossman DC, et al.
Ultrasound enhances reporter gene
expression after transfection of vascular
cells in vitro.
68. Circulation 1999;99(20):2617e20.
69. Wamel JET, Bouakaz A, Houtgraaf J,
Cate FJ, de Jong N. Effects of diagnostic
ultrasound parameters on molecular uptake
Review Article ISSN: 2277-8713
Sowmya Gabbula, IJPRBS, 2013; Volume 2(1): 273-305 IJPRBS
Available Online At www.ijprbs.com
and cell viability. International ultrasonics
symposium, proceedings; 2002.
70. Stride E, Saffari N. On the destruction of
microbubbleultrasound contrast agents.
Ultrasound Med Biol2003; 29(4):563e73.
71. Basta G, Venneri L, Lazzerini G, Pasanisi
E, Pianelli M, Vesentini N, et al. In vitro
modulation of intracellular oxidative stress
of endothelial cells by diagnostic cardiac
72. ultrasound. Cardiovasc Res
2003;58(1):156e61.
73. Wu J. Temperature rise generated by
ultrasound in the presence of contrast
agent. Ultrasound Med Biol1998;
24(2):267e74.
74. Lindner, J.R. 2004. Microbubbles in
medical imaging: current applications and
future directions. Nat Rev Drug Discov. 3:
527-32.
75. Lindner, J.R., A.L. Klibanov, and K. Ley.
Targeting inflammation, In: Biomedical
aspects of drug targeting. (Muzykantov,
V.R., Torchilin, V.P., eds.) Kluwer, Boston,
2002; pp. 149–172.
76. Klibanov, A.L. 1999. Targeted delivery of
gas-filled microspheres, contrast agents for
ultrasound imaging. Adv Drug Deliv Rev. 37:
139-157.
77. 73.Klibanov, A.L. 2005. Ligand-carrying
gas-filled microbubbles: ultrasound contrast
agents for targeted molecular
imaging. Bioconjug Chem. 16: 9-17.
78. Takalkar, A.M., A.L. Klibanov, J.J. Rychak,
J.R. Lindner, and K. Ley. 2004. Binding and
detachment dynamics of microbubbles
targeted to P-selectin under controlled
shear flow. J. Contr. Release.96: 473-482.

Thank you for copying data from http://www.arastirmax.com