You are here

Simulation of Physiological Function of the Kidney in Filtering Blood Sodium Parameter by Micro and Nano Technologies: A Review

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
The main function of the kidney is filtration of the plasma, removal and excretion of unwanted substances from the filtrate in the urine and restoration of needed substances from the filtrate in the blood. These operations are essential since they maintain the volume of intracellular and extracellular fluids and ions should be maintained in a low range. If kidney cannot do their regular job, several ions and fluid will be accumulated in the extracellular. Forms of dialysis, despite successful improvement in quality of lives of the individuals, have several limitations. This may be due to unphysiologic nature of dialysis treatment. As regards sodium is the main osmole in the extracellular fluid (ECF) that disposal or retention of this element mainly determines the volume of extracellular fluid and the ECF volume should be maintained on an acceptable level in the body in order to maintain tissue perfusion. Therefore, a variety of methods include: nanotechnology, microfluidic, bioreactors, and the systems based on optical tweezers for treatment of renal failure are presented in this review that they are developed according to: removing and reabsorbing sodium of the blood, wearable or cultivable, their function is the same as kidneys, and etc.
FULL TEXT (PDF): 
40
50

REFERENCES

References: 

[1] R. A. Rhoades and D. R. Bell, "Medical Physiology: Principles for Clinical Medicine", in Lippincott Williams & Wilkins, 4th North American, Chapter 22, 2012.
[2] K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, "Ganong’s Review of Medical Physiology", the McGraw-Hill, LANG Basic Science, 24th , Section VIII, 2012.
[3] A. C. Guyton and J. E. Hall, "Textbook of Medical Physiology", 11th Philadelphia, Pa.: Elsevier Saunders, 2010, Unit V.
[4] P. Sembulingam and K. Sembulingam, "Essentials of Medical Physiology", Jaypee Brothers Medical Publishers, 6th, 2012.
[5] B. M. Brenner, M. W. Taal, G. M. Chertow, and P. A. Marsden, "
Brenner and Rector's the Kidney,” 9th Philadelphia: W. B. Saunders, Chapter 5, 2011.
[6] D. H. Ellison, “Disorders of Sodium Balance”, Chapter 2, 2000.
[7] M. Suresh and K. Farrington, "Principles of Extracorporeal Therapy: Haemodialysis, Haemofiltration and Haemodiafiltration", Management of Acute Kidney Problems, Springer, pp. 481-489, doi: 10.1007/978-3-540-69441-0_48, 2010.
[8] R. A. Orr, R. Gengler and M. Moritz, "Renal Failure and Replacement Therapy", Critical Care of Children with Heart Disease: Basic Medical and Surgical Concepts, Springer, pp. 687-704, doi: 10.1007/978-1-84882-262-7_60, 2010.
[9] E. Licari, P. Calzavacca, and R. Bellomo, "Renal Replacement Therapy", Surgical Intensive Care Medicine, Springer, pp. 431-438, doi: 10.1007/978-0-387-77893-8_39, 2010.
[10] J. C. Schefold, S. V. Haehling, R. Pschowski, T. O. Bender, C. Berkmann, S. Briegel, D. Hasper and A. Jörres , "The Effect of Continuous Versus Intermittent Renal Replacement Therapy on The Outcome of Critically Ill Patients with Acute Renal Failure (CONVINT): a Prospective Randomized Controlled Trial", Critical Care, Vol. 18, doi: 10.1186/cc13188, 2014.
[11] M. Legrand, M. Darmon, M. Joannidis, and D. Payen, "Management of renal replacement therapy in ICU patients: an international survey", Intensive Care Medicine, Springer, Vol. 39, pp. 101-108, 2013.
[12] A. G. Schneider, R. Bellomo, S. M. Bagshaw, N. J. Glassford, S. Lo, M. Jun, A. Cass, M. Gallagher, "Choice of Renal Replacement Therapy Modality and Dialysis Dependence after Acute Kidney Injury: a Systematic Review and Meta-Analysis", Intensive Care Medicine, Springer, Vol. 39, pp. 987-997, 2013.
[13] R. Bellomo, J. A. Kellum, C. Ronco, "Defining Acute Renal Failure: Physiological Principles", Applied Physiology in Intensive Care Medicine 1, Springer, pp. 115-119, doi: 10.1007/978-3-642-28270-6_26, 2012.
[14] M. Legrand, M. Darmon, M. Joannidis, D. Payen, "Management of renal replacement therapy in ICU patients: an international survey", Intensive Care Medicine, Springer, Vol. 39, pp. 101-108, 2013.
[15] J. W. Agar, A. Perkins, and J. G. Heaf, "Home Hemodialysis: Infrastructure, Water, and Machines in The Home", Hemodialysis International, Vol. 19, pp. S93–S111, 2015.
[16] A. Rastogi and A. R. Nissenson, "Technological Advances in Renal Replacement Therapy: Five Years and Beyond", Clinical Journal of the American Society of Nephrology, Vol. 4, pp. S132–S136, 2009.
[17] A. Davenport, "Portable and Wearable Dialysis Devices for The Treatment of Patients with End-Stage Kidney Failure: Wishful Thinking or Just over The Horizen? ", Pediatr Nephrol, doi: 10.1007/s00467-014-2968-3, 2014.
[18] C. Ronco, A. Davenport, and V. Gura, "The Future of the Artificial Kidney: Moving Towards Wearable and Miniaturized Devices", Nefrologia, Vol. 31, pp. 9-16, 2011.
[19] P. Armignacco, A. Lorenzin, M. Neri, F. Nalesso, F. Garzotto, and C. Ronco, "Wearable Devices for Blood Purification: Principles, Miniaturization, and Technical Challenges", Seminars in Dialysis, Vol. 28, pp. 125-130, 2015.
[20] K. H. Lee, D. J. Kim, B. G. Min, and S. H. Lee, "Nano Web Based Novel Microchip for Artificial Kidney", IFMBE Proceedings, Vol. 14, pp. 279-282, 2002.
[21] E. Weinberg, M. k. Mofrad, and J. Borenstein, "Concept and Computational Design for a Bioartificial Nephron-on-a-Chip", the International Journal of Artificial Organs, Vol. 31, pp. 508-514, 2008.
[22] A. R. Nissenson, C. Ronco, G. Pergamit, M. Edelstein, and R. Watts, "The Human Nephron Filter: Toward a Continuously Functioning, Implantable Artificial Nephron System", Blood Purif, Vol. 23, pp. 269–274, 2005.
[23] S. J. Lee and B. K. Choi, "The Artificial Glomerulus Design Using Diffusion in Microchannels", International Journal Of Precision Engineering And Manufacturing, Vol. 13, pp. 307-310, 2012.
[24] W. H. Fissell, H. D. Humes, Fleischman A. J.,and S. Roy, "Dialysis and Nanotechnology: Now, 10 Years, or Never?" , Blood Purif, Vol. 25, pp. 12-17, 2007.
[25] N. Suwanpayak, MA. Jalil, MS. Aziz, FD. Ismail, J. Ali, and PP. Yupapin, "Blood Cleaner On-Chip Design for Artificial Human Kidney Manipulation", International Journal of Nanomedicine, Vol. 6, pp. 957–964, 2011.
[26] D. G. Johnson, T. S. Khire, Y. L. Lyubarskaya, K. J. P. Smith, J. P. S. DesOrmeaux, J. G. Taylor, T. R. Gaborski, A. A. Shestopalov, Ch. C. Striemer, and J. L. McGrath, "Ultrathin Silicon Membranes for Wearable Dialysis", Advances in Chronic Kidney Disease, Vol. 20, pp. 508-515, 2013.
[27] A. G. Sciancalepore , F. Sallustio, S. Girardo, L. G. Passione, A. Camposeo, E. Mele, M. D. Lorenzo, V. Costantino, F. P. Schena, and D. Pisignano , "A Bioartificial Renal Tubule Device Embedding Human Renal Stem/Progenitor Cells", Renal Proximal Tubule On-Chip with Stem Cells, PLOS ONE, Vol. 9, doi: 10.1371, 2014.
[28] X. Dong, J. Chen, Q. He, Y. Yang, and W. Zhang, "Construction of Bioartificial Renal Tubule Assist Device In Vitro and Its Function of Transporting Sodium and Glucose", Journal of Huazhong University of Science and Technology, Vol. 29, pp. 517-521, 2009.
[29] Y. Fujita, M. Asano, K. Sugano, and T. Tokimasa, "Preparation of a Bioartificial Kidney Using Tubular, Epithelial Cells, and an Evaluation of Na+ Active Transport and Morphological Changes", Journal Artificial Organs, Vol. 3, pp. 107-111, 2000.
[30] A. Saito, K. Sekiguchi, Duc. M. Vu, R. Tanaka, and T. Kakuta, "Present Status and Perspectives of Bioartificial Kidneys", Journal Artificial Organs, Vol. 9, pp. 130–135, 2006.
[31] P. Y. W. Dankers, J. M. Boomker, A. Huizinga-van der Vlag, F.M. M. Smedts, M. C. Harmsen, and M. J. A. van Luyn, "The Use of Fibrous, Supramolecular Membranes and Human Tubular Cells for Renal Epithelial Tissue Engineering: Towards a Suitable Membrane for a Bioartificial Kidney", Macromolecular Bioscience, Vol.10, pp. 1345–1354, 2010.
[32] F. Tasnim, R. Deng, M. Hu, S. Liour, Y. Li, M. Ni, J. Y. Ying, and D. Zink, "Achievements and Challenges in Bioartificial Kidney Development", Fibrogenesis Tissue Repair, pp. 3-14, doi: 10.1186/1755-1536-3-14, 2010.
[33] H. D. Humes, D. Buffington, A. J. Westover, S. Roy, and W. H. Fissell,
"The Bioartificial Kidney: Current Status and Future Promise", Pediatric Nephrology, Vol. 29, pp. 343-351, 2014.
[34] D. A. Buffingtona, A. J. Westovera, K. A. Johnstona, and H. D. Humes,
"The Bioartificial Kidney", Translational Research, Vol. 163, pp. 342–351, 2014.
[35] J. Jansena, C. M. S. Schophuizena, M. J. Wilmera, S. H. M. Lahhame, H. A. M. Mutsaersa, J. F. M. Wetzelsd, R. A. Banke, L. P. van den Heuvelc, J. G. Hoenderopb, and R. Masereeuwa, "A Morphological and Functional Comparison of Proximal Tubule Cell Lines Established from Human Urine and Kidney Tissue", Experimental Cell Research, Vol. 323, pp. 87–99, 2014.
[36] B. D. Humphreys, "Kidney Injury, Stem Cells and Regeneration", Curr Opin Nephrol Hypertens, Vol. 23, pp. 25-31, 2014.
[37] T. M. DesRochers, E. Palma, and D. L. Kaplan, "Tissue-Engineered Kidney Disease Models", Advanced Drug Delivery Reviews, Vol. 69-70, pp. 67-80, 2014.
[38] A. Hoppensack, C. C. Kazanecki, D. Colter, A. Gosiewska, J. Schanz, H. Walles, and K. Schenke-Layland, "A Human In Vitro Model That
International Journal of Science and Engineering Investigations, Volume 4, Issue 42, July2015 50
www.IJSEI.com Paper ISSN: 2251-8843 ID: 44215-06
Mimics the Renal Proximal Tubule", Tissue Engineering Part C: Methods, Vol. 20, pp. 599-609, 2014.
[39] C. M. S. Schophuizena, I. E. D. Napolid, J. Jansena, S. Teixeirad, M. J. Wilmerc, J. G. J. Hoenderopb, L. P.W. Van den Heuvela, R. Masereeuwc, and D. Stamatialis, "Development of a Living Membrane Comprising a Functional Human Renal Proximal Tubule Cell Monolayer on Polyethersulfone Polymeric Membrane", Acta Biomaterialia, Vol. 14, pp. 22-32, 2015.
[40] M. L. L. Madariaga and H. C. Ott, "Bioengineering Kidneys for Transplantation", Seminars in Nephrology, Vol. 34, pp. 384–393, 2014.
[41] J. Jansen, M. Fedecostante, M. J. Wilmera, L. P. van den Heuvel, J. G. Hoenderopb, R. Masereeuw, "Biotechnological Challenges of Bioartificial Kidney Engineering", Biotechnology Advances, Vol. 32, pp. 1317–1327, 2014.
[42] V. Gura, A. Davenport, M. Beizai, C. Ezon, and C. Ronco, "β2-Microglobulin and Phosphate Clearances using a Wearable Artificial Kidney: A Pilot Study”, American Journal of Kidney Diseases, Vol 54, pp. 104–111, 2009.
[43] C. Ronco and L. Fecondini, "The Vicenza Wearable Artificial Kidney for Peritoneal Dialysis (ViWAK PD)" , Blood Purif, Vol. 25, pp.383–388, 2007.
[44] B. C. Rossier, "Negative Regulators of Sodium Transport in the Kidney: Key Factors in Understanding Salt-Sensitive Hypertension?" , American Society for Clinical Investigation, Vol. 111, No. 7, pp. 947-50, 2003.
[45] P. Aebischer, T. K. Ip, G. Panol, and P. M. Galletti: "The Bioartificial Kidney: Progress Towards an Ultrafiltration Device with Renal Epithelial Cells Processing", Life Support Systems, Vol. 5, pp. 159-168, 1987.
[46] H. Uludag, G. Panol, and P. Aebischer, "Control of Water Flux in a Bioartificial Kidney", American Society for Artificial Internal Organs Transactions, Vol. 35, pp. 523-527, 1989.
[47] H. D. Humes, D. A. Buffington, S. M. MacKay, A. J. Funke, and W. F. Weitzel, "Replacement of Renal Function in Uremic Animals with a Tissue-Engineered Kidney", Nature Biotechnology, Vol. 17, No. 5, pp. 451-455, 1999.
[48] H. D. Humes, S. M. MacKay, A. J. Funke, and D. A. Buffington, "Tissue Engineering of a Bioartificial Renal Tubule Assist Device: in Vitro Transport and Metabolic Characteristics", Kidney International, Vol. 55, No. 6, pp. 2502–2514, 1999.
[49] Y. Fujita, M. Terashima, T. Kakuta et al., "Transcellular Water Transport and Stability of Expression in Aquaporin 1-Transfected LLC-PK1 Cells in The Development of a Portable Bioartificial Renal Tubule Device", Tissue Engineering, Vol. 10, No. 5-6, pp. 711–722, 2004.
[50] A. Saito, "Research into The Development of a Wearable Bioartificial Kidney with a Continuous Hemofilter and a Bioartificial Tubule Device Using Tubular Epithelial Cells", Artificial Organs, Vol. 28, No. 1, pp. 58–63, 2004.
[51] W. H. Fissell, A. J. Fleischman, H. D. Humes, and S. Roy, "Development of Continuous Implantable Renal Replacement: Past and Future", Translational Research, Vol. 150, pp. 327-336, 2007.
[52] W. H. Fissell and S. Roy, "The Implantable Artificial Kidney", Seminars in Dialysis, Vol. 22, pp.665-670, 2009.
[53] B. L. Jaber, F. O. Finkelstein, J. D. Glickman, A. R. Hull, M. A. Kraus, J. K. Leypoldt, J. Liu, D. Gilbertson, J. McCarthy, B. W. Miller, J. Moran, A. J. Collins, and FREEDOM Study Group, "Scope and Design of The Following Rehabilitation, Economics and Everyday-Dialysis Outcome Measurements (FREEDOM) Study", American Journal Kidney Diseases, Vol. 53, pp. 310-320, 2009.
[54] A. Scott, "Portable Home Hemodialysis for Kidney Failure", Issues Emerging Health Technologies, Vol.108, pp.1-4, 2007.
[55] N. Anzai, P. Jutabha, Y. Kanai, and H. Endou, "Integrated Physiology of Proximal Tubular Organic Anion Transport", Current Opinion Nephrology Hypertens, Vol.14, pp.472-479, 2005.
[56] Y. J. Lee and H. J. Han, "Regulatory Mechanisms of Na+/Glucose Cotransporters in Renal Proximal Tubule Cells", Kidney International Supplement, Vol. 72, pp. S27-S35, 2007.
[57] S. H. Wright, "Role of Organic Cation Transporters in The Renal Handling of Therapeutic Agents and Xenobiotics", Toxicology and Applied Pharmacology, Vol. 204, pp.309-319, 2005.
[58] M. Soleimani, "Na+:HCO3- Cotransporters (NBC): Expression and Regulation in The Kidney", Journal of Nephrology, Vol. 15, pp.S32-S40, 2002.
[59] X. Gao, Y. Tanaka, Y. Sugii, K. Mawatari, and T. Kitamori, "Basic Structure and Cell Culture Condition of a Bioartificial Renal Tubule on Chip Towards a Cell-based Separation Microdevice", Analytical Sciences, Vol. 27, pp. 907-912, 2011.
[60] E. Raille and A. Doucet, "Sodium-Potassium-Adenosinetriphosphatase-Dependent Sodium Transport in the Kidney: Hormonal Control", Physiological Reviews, Vol. 81, pp. 345-418, 2001.
[61] C. A. Ecelbarger, and S. Tiwari, "Sodium Transporters in the Distal Nephron and Disease Implications", Hypertension: Kidney, Sodium, and the Renin-Angiotensin System, 2006,Vol. 8, pp. 158-165.
[62] N. Kanai, Y. Fujita, and T. Kakuta, "The effects of Various Extracellular Matrices on Renal Cell Attachment to Polymer Surfaces During the Development of Bioartificial Renal Tubules", Artificial Organs, Vol. 23, pp.114-8, 1999.
[63] Y. Sato, M. Terashima, N. Kagiwada, T. Aung, M. Inagaki, T. Kakuta, and A. Saito, "Evaluation of Proliferation and Functional Differentiation of LLC-PK1 Cells on Porous Polymer Membranes for the Development of a Bioartificial Renal Tubule Device", Vol. 11, pp. 1506-1515, 2005.
[64] W. W. Minuth, K. Schumacher, and R. Strehl, "Renal Epithelia in Long Term Gradient Culture for Biomaterial Testing and Tissue Engineering", Biomedical Materials and Engineering, Vol. 15, pp. 51-63, 2005.
[65] W. W. Minuth and R. Strehl, "Technical and Theoretical Considerations about Gradient Perfusion Culture for Epithelia Used in Tissue Engineering, Biomaterial Testing and Pharmaceutical Research", Biomedical Materials, pp. R1-R11, doi: 10.1088/1748-6041/2/2/R01, 2007.
[66] A. Ashkin, J. M. Dziedzic, and T. Yamane, "Observation of a Singlebeam Gradient Force Optical Trap for Dielectric", Optics Letters, Vol. 11, pp.288–290, 1986.
[67] K. Svoboda and S. M. Block, "Biological Applications of Optical Forces", Annual Review of Biophysics and Biomolecular Structure, Vol. 23, pp. 247–282, 1994.
[68] S. Acharya and S. K. Sahoo, "PLGA Nanoparticles Containing Various Anticancer Agents and Tumour Delivery by EPR Effect", Advanced Drug Delivery Reviews, Vol. 63, No. 3, pp. 170–183, 2011.
[69] S. Authasing, S. Chantanetra, S. Mitatha, and P. P. Yupapin, "Tissue Culture on-Chip Design Using Multivariable Molecular Network", Prcodeia Engineeign, Vol. 32, pp. 286-290, 2012.
[70] M. A. Jalil, M. Tasakorn, N. Suwanpayak, J. Ali, and P. P. Yupapin, "Nanoscopic Volume Trapping and Ransportation Using a PANDA Ring Resonator for Drug Delivery", IEEE. Trans. on Nanobioscience, Vol. 10, pp. 106-112, 2011.
[71] N. Moongfangklang, S. Mitatha, and P.P. Yupapin, "Molecular Buffer Using a PANDA Ring Resonator for Drug Delivery Use", Advanced Materials Research, Vol. 506, pp. 49-52, 2012.
[72] M. W. Berns, W. H. Wright, and R. W. Steubing, "Laser Microbeam as a Tool in Cell Biology", International Review of Cytology, Vol. 129, pp.1-44, 1991.
[73] S. M. Block, "Optical Tweezers: a New Tool for Biophysics", In Noninvasive Techniques in Cell Biology, Chapter 15, pp. 375-402, 1990.
[74] I. S. Amiri and J. Ali, "Deform of Biological Human Tissue Using Inserted Force Applied by Optical Tweezers Generated by PANDA Ring Resonator", Quantum Matter, Vol. 3, pp. 24-28, 2014.
[75] I. S. Amiri, S. E. Alavi, M. R. K. Soltanian, A. S. M. Supa'at, N. Fisal, H. Ahmad, "Generation of Femtosecond Soliton Tweezers Using a Half-Panda System for Modeling the Trapping of a Human Red Blood Cell", Journal of Computational and Theoretical Nanoscience, Vol. 12, pp. 10-18, 2015.
[76] Z. Liu, P. Liang, Y. Zhang, Y. Zhang, E. Zhao, J. Yang, and L. Yuan, "Micro particle launcher/cleaner based on optical trapping technology", Optics Express, Vol. 23, pp. 8650-8658, 2015.

Thank you for copying data from http://www.arastirmax.com