[1] Mahendran, M., Lee, G., Sharma, K., & Shahrani, A. 2012. Performance of Evacuated Tube Solar Collector using Water-Based Titanium Oxide Nanofluid. Journal of Mechanical Engineering and Sciences, 3, 301-310.
[2] Colangelo, G., Favale, E., Miglietta, P., de Risi, A., Milanese, M., & Laforgia, D. 2015. Experimental test of an innovative high concentration Nanofluid solar collector. Applied Energy. 154, 874–881.
[3] Sabiha. M. A, Saidur. R. 2015. An experimental study on Evacuated tube solar collector using Nanofluids. Transactions on Science and Technology. 42-49.
[4] Roy. G, Nguyen. C. T, Gauthier.C, Galanis. N. 2007. Heat transfer enhancement using Al2O3–water Nanofluids for an electronic liquid cooling system. Elsevier. 1501–1506.
[5] Roy. G, Nguyen. C. T, Lajoie P. R. 2004. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of Nanofluids. Elsevier. 497–511.
[6] Xuan. Y, Li. Q. 2003. Investigation on Convective Heat Transfer and Flow Features of Nanofluids. Journal of Heat Transfer. 151-155.
[7] Keblinski P, Phillpot S R, Choi S S and Eastman J A 2002 Mechanisms of heat flow in suspensions of Nano-sized particles (Nanofluids) Int. J. Heat Mass Transfer 45 855.
International Journal of Science and Engineering Investigations, Volume 5, Issue 58, November 2016 46
www.IJSEI.com Paper ID: 55816-06
ISSN: 2251-8843
[8] Hu M and Gregory H V 2002 Heat dissipation for Au particles in aqueous solution: relaxation time versus size J. Phys. Chem. B 106 7029.
[9] Zhang J Z 1997 Ultrafast studies of electron dynamics in semiconductor and metal colloidal Nanoparticles: effects of size and surface Acc. Chem. Res. 30 423.
[10] Das S K, Choi S U S, Yu W and Pradeep T 2007 Nanofluids: Science and Technology (New Jersey: Wiley).
[11] Choi S U S and Eastman J A 1995 1995 Int. Mechanical Engineering Congress and Exhibition (San Francisco, CA).
[12] Das S K, Choi S U S and Patel H E 2006 Heat transfer in Nanofluids-a review Heat Transfer Eng. 27 3.
[13] Das S K, Putra N, Thiesen P and Roetzel W 2003 Temperature dependence of thermal conductivity enhancement for Nanofluids J. Heat Transfer 125 567.
[14] Xuan Y, Li Q and Hu W 2002 Aggregation structure and thermal conductivity of Nanofluids AIChE J. 49 1038.
[15] Link S, Burda C, Wang Z L and El-Sayed M A 1999 Electron dynamics in gold and gold-silver alloy Nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation J. Chem. Phys. 111 1255
[16] Patel H E, Das S K, Sundararajan T, Nair S A, George B and Pradeep T 2003 Thermal conductivities of naked and monolayer protected metal Nanoparticle based Nanofluids: manifestation of anomalous enhancement and chemical effects Appl. Phys. Lett. 83 2931.
[17] Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T and Das S K 2004 Model for heat conduction in Nanofluids Phys. Rev. Lett. 93 144301
[18] Barozzi, G. & Pagliarini, G. 1985. A Method to Solve Conjugate Heat Transfer Problems: The Case of Fully Developed Laminar Flow in a Pipe. Journal of Heat Transfer. 107(1), 77.
[19] Karniadakis, G., Mikic, B., & Patera, A. 1988. Minimum-dissipation transport enhancement by flow destabilization: Reynolds’ analogy revisited. Journal of Fluid Mechanics, 192(-1), 365.
[20] Webb, R. 1971. A critical evaluation of analytical solutions and Reynolds analogy equations for turbulent heat and mass transfer in smooth tubes. Springer. 197-204.
[21] Friend, W. & Metzner, A. 1958. Turbulent heat transfer inside tubes and the analogy among heat, mass, and momentum transfer. Aiche Journal, 4(4), 393-402.
[22] Flow, S. & Sciences, J. 2016. Skin-Friction and Heat-Transfer Characteristics of a Laminar Boundary Layer on a Cylinder in Axial Incompressible Flow (AIAA). Journal of The Aeronautical Sciences.
[23] Smithberg, E. & Landis, F. 1964. Friction and Forced Convection Heat-Transfer Characteristics in Tubes With Twisted Tape Swirl Generators. Journal Of Heat Transfer, 86(1), 39.
[24] Aravinth. S. 2000. International Journal of Heat and Mass Transfer. Elsevier. 1399–1408
[25] Zhou, L., Wang, B., Peng, X., Du, X., & Yang, Y. (2015). On the Specific Heat Capacity of CuO Nanofluid. Advances In Mechanical Engineering, 2(0), 172085-172085.
[26] Chon, C., Kihm, K., Lee, S., & Choi, S. 2005. Empirical correlation finding the role of temperature and particle size for Nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 153107.
[27] Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., & Wu, Q. 2002. Thermal conductivity enhancement of suspensions containing Nanosized alumina particles. J. Appl. Phys., 91(7), 4568.
[28] Barbés, B., Páramo, R., Blanco, E., Pastoriza-Gallego, M., Piñeiro, M., Legido, J., & Casanova, C. 2012. Thermal conductivity and specific heat capacity measurements of Al2O3 Nanofluids. Journal Of Thermal Analysis And Calorimetry, 111(2), 1615-1625.
Thank you for copying data from http://www.arastirmax.com