[1] Reichenberger, M. Digitaler Druck resistiver Sensorstrukturen aus Nanodispersionen. Die bayrischen Metall- und Elektro-Arbeitgeber. [Online] October 2015. [Cited: 14th September 2016.] https://www.baymevbm.de/Redaktion/Frei-zugaengliche-Medien/Abteilungen-G....
[2] Dietrich, R. und Tekath, J. Carbon-conductive inks – Fields of application and potential for rationalisation and cost reduction. Peters - Coating Innovations for Electronics. [Online] 28. August 2015. [Cited: 2th December 2016.] https://www.peters.de/en/download-center/technical-publications.
[3] Song, J.-W., et al., et al. Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern. Nanotechnology. 12. February 2008, 19, S. 1 - 6. DOI: 10.1088/0957-4484/19/9/095702.
[4] Denneulin, A., et al., et al. Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films. Carbon. 6. February 2011, 49, S. 2603 - 2614. DOI:10.1016/j.carbon.2011.02.012.
[5] Eom, S.H., et al., et al. Polymer solar cells based on inkjet-printed PEDOT: PSS layer. Organic Electronics. 23. January 2009, 10, S. 536 - 542. DOI:10.1016/j.orgel.2009.01.015.
[6] Wood, D, et al., et al. Quantitative Nanoscale Mapping with Temperature Dependence of the Mechanical and Electrical Properties of Poly(3-hexylthiophene) by Conductive Atomic Force Microscopy. The Journal of Physical Chemistry. 27. April 2015, 119, S. 11459-11467. DOI: 10.1021/acs.jpcc.5b02197.
[7] AgIC. https://shop.agic.cc/products/circuit-printer-cartridge-set. AgIC. [Online] AgIC, 10. October 2016. [Cited: 5. January 2016.] https://shop.agic.cc/products/circuit-printer-cartridge-set.
[8] Novacentrix. Novele IJ-220. Tools and Materials for Printed Electronics. [Online] May 2011. [Cited: 15th September 2016.] https://store.novacentrix.com/v/vspfiles/assets/images/novele%20ij-220_2....
[9] Nanosurf. https://www.nanosurf.com/en/. nanosurf. [Online] Nanosurf, 12. October 2016. [Cited: 12th Oktober 2016.] https://www.nanosurf.com/en/.
[10] Lee, L., Ito, S. und Benten, H. Current Mode Atomic Force Microscopy (C-AFM) Study for Local Electrical Chracterization of Conjugated Polymer Blends. AMBIO. 2012, 41, Supplement 2, S. 135 - 137. DOI: 10.1007/s13280-012-0269-2.
[11] Alexeev, A., Loos, J. und Koetse, M. Nanoscale electrical characterizatiion of semiconducting polymer blends by conductive atomic force microscopy (C-AFM). Ultramicroscopy. 13. July 2005, 106, S. 191-199. DOI:10.1016/j.ultramic.2005.07.003.
[12] Alexeev, A. und Loos, J. Conductive atomic force microscopy (C-AFM) analysis of photoactive layers in inert atmosphere. Organic Electronics. 2008, 9, S. 149 - 154. DOI:10.1016/j.orgel.2007.10.003.
[13] Flaris, V., et al., et al. Use of Conductive AFM for Composites of PP Modified with Carbon Nanofillers. Use of Conductive AFM for Composites of PP Modified with Carbon Nanofillers. [Online] 2016. [Cited: 16th Dezember 2016.] http://leaders.4spe.org/spe/conferences/antec2016/papers/351.pdf.
[14] Kim, S., et al., et al. Highly reliable AgNW/PEDOT: PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness. Journal of Materials Chemistry C. 15. May 2014, 2, S. 5636 - 5646. DOI: 10.1039/C4TC00686K.
Thank you for copying data from http://www.arastirmax.com