You are here

(Spectro-) Electrochemical Detection of Diclofenac with Different Screen-Printed Electrodes

Journal Name:

Publication Year:

Abstract (2. Language): 
A drastic increase in the consumption of pharmaceuticals has resulted in a high load of pharmaceuticals in waste water. Many pharmaceuticals are non-biodegradable and are resistant to conventional waste water treatments. For this reason there is an obvious need to first detect these substances and, second, to detoxify them. Diclofenac (DCF) is a typical representative of an analgesic non-steroidal anti-inflammatory drug. Since the ecotoxicity of DCF is rather low, an overall accumulation increases its toxicity. In this study, a rapid, sensitive, and inexpensive detection method with different commercial screen-printed electrodes (SPEs) (i.e. MWCNT, graphene, graphite and Au SPE) were used to quantitatively detect diclofenac. (Spectro-) Electrochemical methods such as cyclic voltammetry (CV), electrogenerated chemiluminescence (ECL), and amperometry (AM) are discussed in detail and the sensitivities of the electrochemical methods are compared to the sensitivity of conventional gas chromatography-mass spectrometry detection (GC-MSD). The limit of detection (LOD) is 1 μmol/L for GCMS and 50 μmol/L for ECL depending on the electrode used.
54
62

REFERENCES

References: 

[1] M.S.M. Quintino, K. Araki and L. Angnes,“Amperometric quantification of sodium metabisulfite in pharmaceutical formulations utilizing tetraruthenated porphyrin film modified electrodes and batch injection analysis”, Talanta, vol. 68, pp. 1281–1286, 2006.
[2] https://www.drugs.com/diclofenac.html, 6.2.17.
[3] Wikipedia: https://de.wikipedia.org/wiki/Diclofenac.
[4] K. Hikmat, .H. Azis, H. Miessner, S. Müller, D. Kalass, D. Moeller, I. Khorshid and M.A.M. Rashid, “Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma”, Chem. Eng. J. pp. 1033–1041, 2016.
[5] F. Basiri and M. Taei, “Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine“, Microchim. Acta, vol. 184, pp. 155–162, 2017 .
[6] S. Motoc, F. Manea, A. Pop, A. Iscob, A. Martinez-Joaristi, J. Gascon and J. Schoonman, “Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode“, Sensors, vol. 16, pp. 10, 2016.
[7] O.K. Okoth, K. Yan, L. Liu and J. Zhang, “Simultaneous electrochemical determination of paracetamol and diclofenac based on poly(diallyldimethylammonium chloride) functionalized graphene”, Electroanalysis, vol. 28, pp. 76–82, 2016.
[8] T.M.B.F. Oliveira, G de P. Pessoa, A.B dos Santos, P. de Lima-Neto and A.N. Correia, “Simultaneous electrochemical sensing of emerging organic contaminants in full-scale sewage treatment plants”, Chem. Eng. J., vol. 267, pp. 347–354, 2015.
[9] A. Afkhami, A. Bahiraei and T. Madrakian, “Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium”, Mat. Sci. Eng. C , vol. 59, pp. 168–176, 2016.
[10] M. Goodarzian, M. A. Khalilzade, F. Karimi, V. K. Gupta, M. Keyfanfard, H. Bagheri and M. Fouladgar, “Square wave voltammetric determination of diclofenac in liquid phase using a novel liquid multiwall carbon nanotubes paste electrode”, J. Mol. Liq., vol. 197, pp. 114–119, 2014.
[11] S. M. Ghoreishi, F. Saeidinejad, M. Behpour and S. Masoum, “Application of multivariate optimization to electrochemical determination of methyldopa drug in the presence of diclofenac at a nanostructured electrochemical sensor”, Sensors and Actuators B, vol. 221, pp. 576–585, 2015.
[12] A. Mokhtari, H. Karimi-Maleh, A.A. Ensafi and H. Beitollahi, “Application of modified multiwall carbon nanotubes paste electrode for the simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples”, Sensors and Actuators B, vol. 169, pp. 96–105, 2012.
[13] L. Cheng, K. Yan and J. Zhang, “Integration of graphene-hemin hybrid materials in an electroenzymatic system for degradation of diclofenac”, Electrochim. Acta, vol. 190, pp. 980–987, 2016.
[14] M. Arvand, T.M. Golizadeh and M.A. Zanjanchi,” MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac”, Mat. Sci. Eng. C, vol. 32, pp. 1682–1689, 2012.
[15] M. M. Cid-Ceròn, D.S. Guzman-Hernandez, M.T. Ramirez-Silva, A. Galano, M. Romero-Romo and M. Palomar-Pardave, “New insight on the kinetics and mechanism of the electrochemical oxidation of diclofenac in neutral aqueous medium”, Electrochim. Acta, vol. 199, pp. 92–98, 2016.
[16] H. M. Mohamed, “Screen-printed disposable electrodes: Pharmaceutical applications and recent developments”, Trend in Anal. Chem., vol. 82, pp. 1–11, 2016.
[17] X. Cheng, H. Liu, Q. Chen, J. Li and P. Wang, “Enhanced photoelectrocatalytical performance for degradation of diclofenac and mechanism with TiO2 nanoparticles decorated TiO2 nanotubes arrays photoelectrode”, Electrochim. Acta, vol. 108, pp. 203–210, 2013.
[18] X. Cheng, Q. Cheng, X. Deng, P. Wang and H. Liu, “A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac”, Chemosphere, vol. 144, pp. 888-894, 2016.
[19] M. Klavarioti, D. Mantzavinos and D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes”, Envir. Intern., vol. 35, pp. 402–417, 2009.
[20] A. Vogna, R. Marotta, A. Napolitano, R. Andreozzi and M. d’Ischia, “Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone”, Wat. Res., vol. 38 pp. 414–422, 2004.
[21] C. Zwiener and F.H. Frimmel, “Oxidative treatment of pharmaceuticals in water”, Wat. Res., vol. 34, pp. 1881–1885, 2000.
[22] H. Faber, H. Lutze, P.L. Lareo, L. Frensemeier, M. Vogel, T.C. Schmidt and U. Karst, “Liquid chromatography/mass spectrometry to study oxidative degradation of environmentally relevant pharmaceuticals by electrochemistry and ozonization”, J. Cromatogr. A,, vol. 1343, pp. 152–159, 2014.
[23] O.D. Renedo, M.A. Alonso-Lomillo and M.J.A. Martinez, “Recent developments in the field of screen-printed electrodes and their related applications”, Talanta, vol. 73, pp. 201–219, 2007.
[24] E. Bernalte, C. Marin-Sanchez, E. Pinilla-Gil and C.M.A Brett, “Characterization of screen-printed gold and gold nanoparticle-modified carbon sensors by electrochemical impedance spectroscopy”, J. Electroanal. Chem., vol. 709, pp. 70–76, 2013.
[25] D. Izquierdo, A. Martinez, A. Heras, J. Lopez-Palacios, V. Ruiz, R.A.W. Dryfe and A. Colina, “Spatial scanning spectroelectrochemistry. Study of the electrodeposition of Pd nanoparticles at the liquid/liquid interface”, Anal. Chem., vol. 84, pp. 5723–5730, 2012.
[26] A. Heras, A. Colina, V. Ruiz and J. López-Palacios, “UV-visible spectroelectrochemical detection of side reactions in the hexacyanoferrate(III)/(II) electrode process”, Electroanalysis, vol. 15, pp. 702–708, 2003.
[27] V. Ruiz, A. Colina, A. Heras, J. López-Palacios and R. Seeber, “Bidimensional chronoabsorptometric study of electropolymerization”, Electrochem. Commun., vol. 4, pp. 451–456, 2002.
[28] N. Aristov and A. Habekost, “Heterogeneous dehalogenation of PCBs with iron/toluene or iron/quicklime”, Chemosphere, vol. 80, pp. 113-115, 2010.
International Journal of Science and Engineering Investigations, Volume 6, Issue 65, June 2017 62
www.IJSEI.com Paper ID: 66517-09
ISSN: 2251-8843
[29] A. Habekost and N. Aristov, “Heterogeneous reductive dehalogenation of PCB contaminated transformer oil and brominated diphenyl ethers with zero valent iron”, Chemosphere, vol. 88, pp. 1283-1287, 2012.
[30] A.J. Bard, “Electrogenerated Chemiluminescence”. New York: Marcel Dekker, New York, 2004.
[31] M.M. Richter, “Electrochemiluminescence (ECL)”, Chem. Rev., vol. 104, pp. 3003–3036, 2004.
[32] S. Parveen, M.S. Aslam, L. Hu and G. Xu, “Electrogenerated Chemiluminescence. Protocols and Applications”. Heidelberg, Germany: Springer, 2013.
[33] M.D. Witt, S. Roughton, T.J. Isakson and M.M. Richter, “Enhanced electrogenerated chemiluminescence of Ru(bpy)32+/TPrA (bpy=2,2’-bipyridineTPrA-tri-n-propylamine) via oxygen quenching using melatonin”, J. Luminesc., vol. 171, pp. 118–123, 2016.
[34] C.S. Haslag and M.M. Richter, “Electrogenerated chemiluminescence quenching of Ru(bpy)32+ (bpy=2,2’-bipyridine) in the presence of acetaminophen, salicylic acid and their metabolites”, J. Luminesc., vol. 132, pp. 636–640, 2012.
[35] A. Habekost, “Investigations of some reliable electrochemiluminescence systems on the basis of tris(bipyridyl)Ruthenium(II) for HPLC analysis” World J. Chem. Educ., vol. 4, pp. 13–20, 2016
Achim Habekost: born in Hildesheim, Germany, 1957.
He studied in Hannover and Munich (chemistry and physics), did his PhD in Hannover (physical chemistry), and his habilitation in Hannover. Since 2004 he is full professor in Ludwigsburg, Germany.
Prof. Dr. Achim Habekost, membership: Gesellschaft Deutscher Chemiker, Germany.

Thank you for copying data from http://www.arastirmax.com