You are here

DİJİTAL MAMMOGRAMLARDAKİ MEME KİTLELERİNİN BİLGİSAYAR DESTEKLİ TESBİTİ

COMPUTER AIDED DETECTION OF MAMMOGRAPHIC MASSES ON DIGITAL MAMMOGRAMS

Journal Name:

Publication Year:

Abstract (2. Language): 
This paper presents an automated system for detecting masses in mammogram images. The proposed method is based on a two-step procedure: a. regionsof interest (ROI) specification, b. rule based classification of regions of interest. In the firststep, the intensity values of pixels in mammogram images are used and scanning the pixels in 8 directions isevaluated. By using various thresholds while scanning the pixels, ROIs are specified. In the second step,all ROIs are labeled using Connected Component Labeling (CCL) and two rules are used to categorizeROIs as true masses or not. These rules are based on euclidean distance and regularity values of the ROIs. To test the system’s efficiency, we applied it to images from the Mammographic Image Analysis Societydatabase. The accuracy of the system reaches 88.37% with 0.292 false positives per image
Abstract (Original Language): 
Bu çalışmada, mammogram görüntülerindeki kitlelerin otomatik olarak tesbit edilebilmesi için bir sistem geliştirilmiştir. Önerilen yöntem iki basamaklıdır: a. ilgi alanlarının belirlenmesi, b. ilgi alanlarının kural tabanlı sınıflandırılması. İlk aşamada görüntü kesitlerindeki piksellerin yoğunluk değerleri hesaplanmış ve her piksel için 8 yönlü tarama işlemi gerçekleştirilmiştir. Bu tarama işlemi sırasında çeşitli eşik değerleri kullanılarak, ilgi alanları belirlenmiştir. İkinci aşamada, tüm ilgi alanları bağlantılı bileşen etiketleme (BBE) yöntemiyle tanımlanmışve iki kural kullanılarak ilgi alanları sınıflandırılmıştır. Bu kurallar ilgi alanlarının öklid uzaklıkları ve biçim değerlerini sorgulamaktadır. Sistemin performansı Mammogram Görüntü Analizi Topluluğu veritabanına uygulanarak ölçülmüştür. Sistemin duyarlılığı görüntü başına 0.292 yanlışpozitif değeriyle %88.37’ye ulaşmaktadır.
87-97

REFERENCES

References: 

Baines C. J., McFarlane D. V., and Miller A. B., (1990), “The Role of the Reference
Radiologist: Estimates of Interobserver Agreement and Potential Delay in Cancer
Detection in the National Screening Study”, Investiga Radiology, 25, 971-976.
Bird R. E., (1990), “Professional Quality Assurancefor Mammography Screening
Programs”, Radiology, 175, 587.
Brenner R. J., (1991), “Medicolegal Aspects of Breast Imaging: Variable Standards
of Care Relating to Different Types of Practice”, AJR, 156, 719-723.
Serhat ÖZEKES, A. Yılmaz ÇAMURCU
96
Cheng H. D., Lui Y. M., and Freimanis R. I., (1998), “A Novel Approach to
Microcalcification Detection Using Fuzzy Logic Technique”, IEEE Trans Med
Imaging, 17, 442-450.
Kalman B. L., Reinus W. R., Kwasny S. C., Laine A.,and Kotner L., (1997),
“Prescreening Entire Mammograms for Masses with Artificial Neural Networks:
Preliminary Results”, Acad Radiol, 4, 405-414.
Kupinski M. A. and Giger M. L., (1997), “Investigation of Regularized Neural
Networks for the Computerized Detection of Mass Lesions in Digital
Mammograms”, Proc IEEE Eng Medicine & Biology Conference, 1336-1339.
Manohar M. and Ramapriyan H. K., (1989), “ConnectedComponent Labeling of
Binary Images on a Mesh Connected Massively Parallel Processor,” Computer
Vision, Graphics, and Image Processing, 45, 133-149.
Nagel R. H., Nishikawa R. M., and Doi K., (1998), “Analysis of Methods for
Reducing False Positives in the Automated Detectionof Clustered
Microcalcifications in Mammograms”, Med Phys, 25, 1502-1506.
Nishikawa R. M., Giger M. L., Doi K., Vyborny C. J., and Schmidt R. A., (1995),
“Computer-Aided Detection of Clustered Microcalcifications on Digital
Mammograms”, Medical and Biological Engineering andComputing, 33, 174-178.
Polakowski W. E., Cournoyer D. A., Rogers S. K., DeSimio M. P., Ruck D. W.,
Hoffmeister J. W., and Raines R. A., (1997), “Computer-Aided Breast Cancer
Detection and Diagnosis of Masses Using Difference of Gaussians and Derivative-Based Feature Saliency”, IEEE Trans Med Imaging, 811-819.
Ronse C. and Devijver P. A., (1984), Connected Components in Binary Images: the
Detection Problem, Research Studies Press, NY, Wiley.
Stefano L. D. and Bulgarelli A., (1999), “A Simple and Efficient Connected
Components Labeling Algorithm”, Proceedings of International Conference on
Image Analysis and Processing, 322-327.
Suckling J., Parker J., Dance D., Astley S., Hutt I., and Boggis C., (1994), “The
Mammographic Images Analysis Society Digital Mammogram Database”, Exerpta
Medica, 1069, 375–8
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2005/2
97
Thurfjell E. L., Lernevall K. A., and Taube A. A., (1994), “Benefit of Independent
Double Reading in a Population-Based Mammography Screening Program”,
Radiology,191, 241-244.
Vyborny C. J. and Giger M. L., (1994), “Computer Vision and Artificial Intelligence
in Mammography”, AJR,162, 699-708.
Wallis M., Walsh M., and Lee J., (1991), “A Review of False Negative
Mammography in a Symptomatic Population", Clinical Radiology, 44, 13-15.

Thank you for copying data from http://www.arastirmax.com