You are here

TAVLAMA BENZETİMİ ALGORİTMASINI KULLANARAK FAKÜLTE DERSLERİNİN ÇİZELGELENMESİ

TIMETABLING OF FACULTY LECTURES USING SIMULATED ANNEALING ALGORITHM

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, a faculty-course timetabling problem is solved by using a Simulated Annealing based algorithm. In this sort of problems, both the objectives and the constraints are usually highly institution-specific. Thus, there is not a single commonly usedtool to solve this planning problem. Since the problems are institution-specific, the results of this study have not beencompared to those of the studies which are published already. Comparing with the many of the studies, the most important difference of this study is to take the lecturer seniority into consideration. This study separates the problem into two main components in the solution progress. While the first one is dealing with searching of the lectures which can be located into the same time interval, the second one is dealing with assigning the lectures to the most suitable place in the timetable. That algorithm is experimented with 2006-2007 academic year first term data of Faculty of Business Administration at Istanbul University. The results of proposed algorithm is compared to those of genetic algorithms and tabu search. Thus, the genetic algorithms approach can not even find a feasible solution. And the tabu search approach finds worse solutions than the proposed algorithm.
Abstract (Original Language): 
Bu çalışmada fakülte derslerinin çizelgelenmesi problemi Tavlama Benzetimi temelli bir algoritma ile çözülmüştür. Bu tür problemlerde hem amaçlar hem de kısıtlar genellikle kuruma özgüdür. Bu nedenle böyle bir planlama problemini çözecek ortak bir araç bulunmamaktadır. Problemlerin kuruma özgü olmasınedeniyle çalışmanın sonuçlarıliteratürdeki bir çalışmanın sonuçlarıyla karşılaştırılamamıştır. Bu çalışmanın literatürde yer alan pek çok çalışmadan en önemli farklarından birisi öğretim üyesi kıdemlerinin dikkate alınmışolmasıdır. Çözüm sürecinde problem iki ana parçaya ayrılmıştır. Bunlardan birincisi aynızaman dilimine yerleştirilebilecek dersleri aramakla ilgilenirken, ikincisi derslerin zaman çizelgesinde en uygun yerlere yerleştirilmesiyle ilgilenmektedir. Algoritma İstanbul Üniversitesi İşletme Fakültesi’ nin 2006-2007 Akademik takvimi birinci yarıyıl verileriyle denenmiştir. Önerilen algoritmanın sonuçlarıile genetik algoritmalar ve tabu arama algoritmalarının sonuçlarıkıyaslanmıştır. Buna göre, genetik algoritmalar yaklaşımıuygun çözüm dahi bulamamaktadır. Tabu arama yaklaşımıise daha başarısız çözümler bulmaktadır.
1-20

REFERENCES

References: 

Abdennadher, S., and Marte, M., (2000), “University Course Timetabling Using
Constraint Handling Rules”, Applied Artificial Intelligence, 14, 311-325.
Abdullah, S., Ahmadi, S., Burke, E. K., and Dror, M., (2007), “Investigating Ahuja-Orlin’s Large Neighborhood Search Approach for Examination Timetabling”, OR
Spectrum, 29, 351-372.
Anagnostopoulos, A., Michel, L., Van Hentenryck, P., and Vergados, Y., (2006), “A
Simulated Annealing Approach to the Traveling Tournament Problem”, Journal of
Scheduling, 9, 177-193.
Avella, P., and Vasil’ev, I., (2005), “A Computational Study of Cutting Plane
Algorithm for University Course Timetabling”, Journal of Scheduling, 8, 497-514.
Beligiannis, G. N., Moschopoulos, C. N., Kaperonis, G. P., and Likothannassis, S.
D., (Article in Press), “Applying Evolutionary Computation to the School
Timetabling Problem: The Greek Case”,Computers & Operations Research.
Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., and Qu, R., (2007), “A
Graph-Based Hyper-Heuristic for Educational Timetabling Problems”, European
Journal of Operational Research, 176, 177-192.
Burke, E. K., and Newall, J. P., (2004), “Solving Examination Timetabling
Problems Through Adaptation of Heuristic Ordering”, Annals of Operations
Research, 129, 107-134.
Burke, E. K., Kendall, G., and Soubeiga, E., (2003), “A Tabu-Search Hyperheuristic
for Timetabling and Rostering”, Journal of Heuristics, 9, 451- 470.
Causmaecker, D. P., Demeester, P., and Berghe, G. V., (2008), “A Decomposed
Metaheuristic Approach for A Real-World University Timetabling Problem”,
European Journal of Operational Research.
Colorni, A., Dorigo, M., and Maniezzo, V., (1998), “Metaheuristics for High School
Timetabling”, Computational Optimization and Applications, 9, 275-298.
Daskalaki, S., Birbas, T., and Housos, E., (2004), “An Integer Programming
Formulation for A Case Study in University Timetabling”, European Journal of
Operatinal Research, 153, 117-135.
Head, C., and Shaban, S., (2007), “A Heuristic Approach to Simultaneous
Course/Student Timetabling”, Computers and Operations Research, 34, 919-933.
19
Tunçhan CURA
20
Henz, M., and Würtz, J., (1996), “Constraint-Based Timetabling- A Case Study”,
Applied Artificial Intelligence, 10, 439-453.
Kirkpatrick, S., Gelatt, Jr. C. D., and Vecchi, M. P., (1983), “Optimization by
Simulated Annealing”, Science, 220, 671-680.
Loukil, T., Teghem, J., and Fortemps, P., (2007), “A Multi-Objective Production
Scheduling Case Study Solved by Simulated Annealing”, European Journal of
Operational Research, 179, 709-722.
MirHassani, S. A., (2006), “A Computational Approach to Enhancing Course
Timetabling with Integer Programming”, Applied Mathematics and Computation,
175, 814-822.
Reeves, C. R., (edt.), (1995), Modern Heuristic Techniques for Combinatorial
Problems, McGraw-Hill.
Schimmelpfeng, K., and Helber, S., (2006), “Application of A Real-World
University-Course Timetabling Model Solved by Integer Programming”, OR
Spectrum, 1-21.
Yeh, J., and Fu, J. C., (2007), “Parallel Adaptive Simulated Annealing for
Computer-Aided Measurement in Functional MRI Analysis”, Expert Systems with
Applications, 33, 706-715.
Zhao, F., and Zeng, X., (2008), “Optimization of Transit Route Network, Vehicle
Headways and Timetables for Large-Scale Transit Networks”, European Journal of
Operational Research, 186, 841-855.

Thank you for copying data from http://www.arastirmax.com