You are here

AN ASYMPTOTIC TEST FOR THE DETECTION OF HETEROSKEDASTICITY

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
An asymptotic test for heteroskedasticity has been developed. The test does not rely on any assumption about heteroskedasticity, and introduces two alternative statistics based on the same idea. Power of these two alternative test statistics has been measured by Monte Carlo simulations. For large samples they performed fairly well, whereas for sample sizes ≤ 100, their power was influenced by the structure of the heteroskedasticity
Abstract (Original Language): 
Bu makalede heteroskedastisiteye (değişen varyans) yönelik asimptotik bir test geliştirilmiştir. Test, herhangi bir heteroskedastisite varsayımına dayanmamaktadır ve aynı düşünceye dayanan iki alternatif istatistik sunmaktadır. Bu iki test istatistiğinin güçleri Monte Carlo simülasyonları ile ölçülmüştür. Büyük örneklemler için oldukça iyi performansları olamsına karşın 100’den küçük örneklem büyüklüğü için testin gücü heteroskedastisitenin yapısından etkilenmektedir.
33-44

JEL Codes:

REFERENCES

References: 

Breusch, T. S. and Pagan, A. R., (1979), A simple test for heteroskedasticity and random coefficient variation,
Econometrica, Vol. 47, No. 5, 1288-1290.
Gujarati, D. N., (1999), Temel Ekonometri, Çevirenler: Ümit Şenesen ve G. G. Şenesen. Literatür Yay. İstanbul,
372.
Glaser, R. E., (1976), Exact critical values for Bartlett's test for homogeneity of variances, Journal of American
Statistical Association, Vol. 71, no. 354, 488.
Glass, G. V., (1966), Testing homogeneity of variances, American Educational Research Journal, Vol. 3, No. 3,
188.
Glejser, H., (1969), A new test for heteroskedasticity, Journal of American Statistical Association, Vol. 64, No.
325, 316.
Goldfeld, S. M. and Quandt, R. E., (1965), Some tests for homoskedasticity, Journal of American Statistical
Association, Vol. 60, No. 310, 540-541.
Malinvaud, E., (1976), Statistical Methods for Econometrics, 2
nd
edition, North-Holland, Amsterdam, 88.
Neter, J., Kutner, M. H., Nachtsheim, C. J and Wasserman, W., (1996), Applied linear statistical models. 4
th
edition, McGraw-Hill, Boston, 764-765.
Park, R. E., (1964), Estimation with heteroscedastic error terms, Econometrica, c.34, 4, 888.
Ramsey, J. B., (1969), Tests for specification error in classical linear least-squares regression analysis. Journal of
the Royal Statistical Society, B31, 2, 252.
Stuart, A. and Ord, J. K., (1994), Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory. 6
th
edition, John Wiley & Sons Inc. New York, 197 and 361.
White, H., (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity, Econometrica, Vol. 48, No. 4, 821-827.

Thank you for copying data from http://www.arastirmax.com