You are here

Fixed point theorems in Banach spaces with normal structure

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
This paper encompasses two theorems on the existence of a unique common fixed point and the approximation of this fixed point by lshikawa type iterative sequences, for two operators satisfying property - A* in Banaeh spaces having normal structure. Moreover, certain relationship between normal structure and property - B* has been established.
215-225

REFERENCES

References: 

1. Brodskii, M.S. and Milman. : On the centre of a convex set, Dokl. Adad. Nauk,-D.P. SSSR, 59(1948). 837-840.
2. Belluce, L.P. and Kirk, W.A. : Fixed point theorems for certain classes of non-
expansive mappings. Proc. Amer. Malh-Soc, 20(1),
lOfiQ 141.14ft
3. Cook. R.(i.
4- tïric. l.j. B
5. Gofïmun. C and Pcdriek. G.
6. Ishikawa. S.
7.
Karman
. K.
8. Kirk. W.A.
9. Reincrmann. J.
hilinilc mairiccs and sequences spaces, Macmiilian Publishing Co. (19.52), 64.
A generalisation of" Banach contraction principle. Proc. Amer. Math. Soc. Vol.45, no.2. (1974). 267¬273.
First Course in Functional Analysis. Prentice-I kill of"
India Private Limited. ( 1987), 71.
Fixed point by a new iteration method. Proc. Amer.
Math. Soc. 149 (1974). 147-150.
Some results on fixed points-IV, Fund. Math. 1.XX1V.
(1972). 181-187.
Fixed point theory (Proc. Workshop Univ. Sherbrooke. ( 1980). Springer-verlag Lecture Notes-No. 886(1981). 484-505.
Uber. Toeplit/xhe iterations verfhren and eingie thre Anwendungen in Konslrukitven Fixpun théorie. Studia Math.. 32( 1969), 209-227.

Thank you for copying data from http://www.arastirmax.com