You are here

Derin ven trombozu olan hastalara verilen hastabakıcılık hizmetlerinin yönetimine ilişkin bir çoklu test yaklaşımı

A new multiple test approach for nursing care administration of deep vein thrombosis patients

Journal Name:

Publication Year:

Abstract (2. Language): 
In nursing care administration, it is critical to evaluate the risk assessment ability of the nurses for patients at different risk status. For an investigation carried out in the Jobst Vascular Institute at The Toledo Hospital, the nurse risk evaluation necessitates the analysis of risk assessment data for prophylaxis of deep venous thrombosis when comparing nurse risk assessment scores with master scores simultaneously at different risk categories. While conventional statistical methods fail to make any conclusion from the data, we construct a new stepwise confidence procedure that strongly controls the family-wise error rate and successfully detects the difference between the nurse score and the Master score. Compared with existing statistical methods, the new bivariate method is more powerful than the Bonferroni procedure and the Holm's step-down algorithm for this data set. It is also more robust than the Hochberg's step-up approach (which relies on an un-checkable assumption of positive dependence among test statistics to strongly control the family-wise error rate). In the data analysis of patients with deep vein thrombosis, the new method successfully detects the difference between the master risk assessment score and the nurse score, while the conventional statistical methods are unable to make any conclusive statement. The new statistical method is applicable to other fields of administration research simultaneously comparing management performances of two different groups under different scenarios.
Abstract (Original Language): 
Hastabakıcılık yönetiminde, hemsirelerin farklı risk düzeylerindeki hastaların tasıdıkları riski degerleme becerileri önem arz etmektedir. Toledo Hastanesi Jobst Damar Enstitüsü’nde yürütülen bir arastırma, farklı risk kategorileri için hemsirelerin ve uzmanların risk degerleme puanlarını es zamanlı olarak karsılastırabilmek üzere derin ven trombozunun önlenmesi ile ilgili risk degerleme verilerinin analizini gerektirmistir. Geleneksel istatistik teknikler verilerden herhangi bir sonuç çıkarmada basarısız olurken, yapılandırdıgımız yeni asamalı güven yöntemi alfa hatasını güçlü bir biçimde kontrol altında tutmakta ve hemsireler ile uzmanların puanları arasındaki farkı basarı ile saptamaktadır. Mevcut istatistik teknikler ile kıyaslandıgında, bu yeni iki degiskenli yöntemin, söz konusu veri seti için Bonferroni ve Holm’un basamaklı isleme algoritmasından daha güçlü oldugunu belirtebiliriz. Aynı zamanda Hochberg'in artıs yaklasımından (ki bu yaklasım asamalı hata oranını sıkı kontrol altında tutma amacıyla test istatistikleri arasında sınanamaz bir pozitif bagımlılık varsayımına dayanmaktadır.) da daha saglamdır. Derin ven trombozu olan hastaların verilerinin analizinde, geleneksel istatistik teknikler nihai bir yorum saglayamazken, bu yeni teknik hemsire ve uzman risk degerleme puanları arasındaki farkı basarıyla tayin etmektedir. Önerilen yeni teknik, es zamanlı olarak farklı kosullar altında iki farklı grubun yönetim performanslarını kıyaslamaya yönelik yönetim arastırmalarının diger alanlarına da uyarlanabilir niteliktedir.
22-34

REFERENCES

References: 

[1] M. Silverstein, et al., Trends in the Incidence of Deep Vein Thrombosis and
Pulmonary Embolism: A 25-year Population-based Study. Archives of Internal
Medicine, 158, 585-593 (1998).
[2] R.H. White, The Epidemiology of Venous Thromboembolism. Circulation, 107; I4-I8
(2003).
[3] J. Heit, American Society of Hypertension Meeting, 2006.
[4] N. Browse and M. Thomas, Source of Non-lethal Pulmonary Embolism. Lancet, 1,
258-259 (1974).
[5] A. Comerota, et al., Endovenectomy of the Common Femoral Vein and
Intraoperative Iliac Vein Recanalization for Chronic Iliofemoral Venous Occlusion.
Journal of Vascular Surgery, North American Chapter, 52, 1, 243-247 (2010).
[6] C. Kearon, et al., Antithrombotic Therapy for Venous Thromboembolic Disease.
American College of Chest Physicians Evidence-Based Clinical Practice Guidelines
(8th Edition) CHEST, 133, 6, 454S-545S (2008).
[7] S. Galson, Surgeon General's Perspectives, Prevention of Deep Vein Thrombosis
and Pulmonary Embolism, Public Health Reports, July-August, 123 (2008).
[8] W. Geerts, et al., American College of Chest Physicians. Prevention of venous
thromboembolism: American College of Chest Physicians Evidence-Based Clinical
Practice Guidelines (8th Edition). Chest 2008; 133(6 Suppl):381S-453S.
[9] S. Goodacre, et al., Meta-analysis: the value of clinical assessment in the diagnosis
of deep venous thrombosis. Ann Intern Med.; 143(2): 129-39, (2005).
[10] J.C. Hsu, Multiple Comparisons: Theory and Methods, London, Chapman and Hall,
1996.
[11] Y. Hochberg, and A. C. Tamhane, Multiple Comparison Procedures, New York,
Wiley, (1987).
[12] Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance.
Biometrika 75, 800-802 (1988).
J. Chen, E. Walsh, G. Davis, A. Comerota, M. Gravett, D. Wojnarowski / 9stanbul Üniversitesi 9sletme Fakültesi
Dergisi 40, 1, (2011) 22-34 © 2011
30
[13] H. Block, T. Savits, and J. Wang, Negative Dependence and the Simes Inequality.
Journal of Statistical Planning and Inference, 138, 12, 4107-4110 (2008).
[14] J.T. Chen, A Two-stage Estimation Procedure. Biometrics, 64, 406-412 (2008).
[15] Y. Huang and J. Hsu, Hochberg's Step-up Method: Cutting Corners off Holm's
Step-down Method. Biometrika, 94, 965-975 (2007).
[16] S.K. Sarkar, Some Probability Inequalities for Ordered MTP2 Random Variables: A
Proof of the Simes Conjecture. Annals of Statistics. 26, 494-504 (1998).
[17] F. Shepherd, et al., Erlotinib in Previously Treated Non-mall-cell Lung Cancer. The
New England Journal of Medicine, 353, 2, 123-132 (2005).
[18] G. Giovannoni, et al., A placebo-controlled trial of oral cladribine for relapsing
multiple sclerosis. The New England Journal of Medicine, Vol 362, 5, 416-426
(2010).
[19] T. Gill, et al., A program to prevent functional decline in physically frail elderly
persons who live at home. The New England Journal of Medicine, Vol 347, 14,
1068-1074 (2002).
[20] J.T. Chen, Inference on the Minimum Effective Dose Using Binary Data.
Communications in Statistics Theory and Methods, 37, 2124-2135, (2008).
[21] J.C. Hsu, and R. Berger, Stepwise confidence intervals without multiplicity
adjustment for dose-response and toxicity studies, Journal of the American
Statistical Association, 94, 468-482 (1999).
[22] X. Lu and J.T. Chen, Exact Simultaneous Confidence Segments for all Contrast
Comparisons. Journal of Statistical Planning and Inference, 139, 2816-2822
(2009).
[23] J.T. Chen and F. Hoppe, Simultaneous Confidence Intervals. The Encyclopedia of
Biostatistics, 5, 4114-4116, Editted by Peter Armitage, John Wiley & Sons, New
York, 1998.
[24] H. Bozdogan, A New Class of Information Complexity (ICOMP) Criteria with an
Application to Customer Profiling and Segmentation. Istanbul University Journal of
the School of Business Administration, 39, 2, 370-398 (2010).
[25] H. Bozdogan and P. Bearse, Information Complexity Criteria for Detecting
Influential Observations in Dynamic Multivariate Linear Models Using the Genetic
Algorithm. Journal of Statistical Planning and Inference, 114, 31-44 (2003).

Thank you for copying data from http://www.arastirmax.com