Akamatsu, Y., M. Takahashi and M. Shimada, 1992. Cell-free extraction and assay of oxaloacetase from the brown-rot fungus Tyromyces palustri. Journal of the Japan Wood Research Society. 38: 495-500.
ASTINI.
1998
. Standard test method for wood preservatives by laboratory soil-block cultures. D 1413-76. Annual Book of Standards, Vol 4.10. Wood. American Society for Testing and Materials, West Conshohocken, PA. 206-212.
ASTM, 2005. Standard test method for Mechanical properties of Lumber and wood-base Structural Material. D4761.
Bech-Andersen, J., 1987. Production, function and neutralization of oxalic acid produced by the dry rot fungus and other brown rot fungi. Document IRG/WP 1330. International Research Group on Wood Protection, Stockholm, Sweden.
Clausen, A.C. and S.N. Kartal, 2003. Accelerated detection of brown-rot decay: Comparison of soil block test, chemical analysis, mechanical properties, and immunodetection. Forest Products Journal. 53 (11-12): 90-94.
Clausen, A.C, R.J. Ross, J.W. Forsman and J.D. Balachowski, 2001. Condition assessment of roof trusses of Quincy Mine Balcksmith Shop in Keweenaw National Historical Park. Res. Note FPL-RN-0281 .USDA Forest Serv, Forest Prod. Lab., Madison, WI.
Curling, S.F., A.C. Clausen and J.E. Winandy, 2001. The effect of hemicellulose degradation on the mechanical properties of wood during brown-rot decay. Document IRG/WP 01-20219. International Research Group on Wood Protection, Stockholm, Sweden.
European Committee for Standardization 1993. EN 310: Determination of bending
strength and moduls of elasticity. Enoki, A., S. Yoshioka, H. Tanaka and G. Fuse, 1990. Extracellular H202-producing
and one electron oxidation system of brown rot fungi. Document IRG/WP 1445.
International Research Group on Wood Protection, Stockholm, Sweden. Enoki. A., S.G. Fuse and H. Tanaka 1991. Extracellular H202-producing and H202-
reducing compounds of wood decay fungi. Document IRG/WP 1516.
International Research Group on Wood Protection, Stockholm, Sweden. Espejo. E. and E. Agosin, 1991. Production and degradation of oxalic acid by brown
rot fungi. Applied and Environmental Microbiology. 57 (7): 1980-1986. Gadd, G.M., 1999. Fungal production of citric and oxalic acid: importance in metal
speciation, physiology and biogeochemical processes. Advances in Microbial.
Physiology. 41:47-92. Green III, F. and A.C. Clausen, 2003. Copper tolerance of brown-rot fungi: time
course of oxalic acid production, International Biodeterioration &
Biodegradation. 51: 145-149. Green III, F., M.J. Larsen, J.E. Winandy and T.L. Highley, 1991. Role of oxalic
acid in incipient brown-rot decay. Material und Organisman. 26-3: 191-213. Hastrup, A.C.S., F. Green HI, C.A. Clausen and B. Jensen, 2005. Tolerance of
Serpula lacrymans to copper-based wood preservatives, International
Biodeterioration & Biodegradation. 56: 173-177.Hastrup, A.C.S., F., B.
Jensen
, C.A. Clausen and F. Green III, 2006. The effect of GaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi. Holzforschung, 60: 339-345.
Highley, T.L., 1987. Change in chaemical components of hardwood and softwood by brown-rot fungi. Material und Organisman. 22 (1): 36-45.
Imamura, Y., 1993. Estimation of the fungal resistance of wood composites for structural use. Curr. Japanese Mater. Res. 11:75-84.
Itakura, S., T. Hirano, H. Tanaka and A. Enoki, 1994. Relationship between degradation of wood, cellulose or lignin-related compounds and production of hydroxyl radical or accumulation of oxalic acid in cultures of brown-rot fungi. Document IRG/WP 94-10062. International Research Group on Wood Protection. Stockholm, Sweden.
Kim, G., W. Jee and J. Ra, 1996. Reduction in mechanical properties of radiate pine
wood associated with incipient brown-rot decay. Mokchae Konghak. 24( 1 ):81 -86. Koenigs J.W., 1974. Hydrogen peroxide an iron: A proposed system for decomposition
of wood by brown-rot basidiomycetes. Wood and Fiber. 6: 66-80. Köse, C, 2006. Esmer Çürüklükte Oksalik Asidin Önemi. Doktora Tezi. İ.Ü. Fen
Bilimleri Enstitüsü
(i
n Turkish) Micales, J.A. and T.L. Highley, 1988. Some physiological characteristics of a
nondegradative strain of Postia(=Poria) placenta. Document IRG/WP 1341.
International Research Group on Wood Protection, Stockholm, Sweden. Münir, E., J J. Yoon, T. Tokimatsu, T. Hattori and M. Shimada, 2001. A
physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete
Fomitopsis palustris. Proceedings of the National Academy of Science.
98:11126-11130.
Murphy, R.J. and J.F. Levy, 1983. Production of copper oxalate by some copper tolerant fungi. Transactions of the Biritish Mycology Society, 81:165-168.
Ritschkoff, A.C.S. and L. Viikari, 1991. The production of extracellular hydrogen-peroxide by brown-rot fungi. Material und Organisman. 26:157-167.
Schmidt, E.L., D.W. French, R. Gertjejansen, J. Herman and H. Hall, 1978. Strength reductions in particleboard caused by fungi. Forest Products Journal 28 (2): 26-31.
Schmidt, C.J., B.K. Whittenden and D.D. Nicholas, 1981. Apropose role for oxalic
acid in non-enzymatic wood decay by Brown-rot fungi. Proc American Wood
Pres. Assoc., 77: 157-164. Shimada, M., Y. Akamatsu, A. Otta and M. Takahashi, 1991. Biochemical
relationships between biodegradation of cellulose and formation of oxalic acid in
brown-rot decay. Document IRG/WP 1472. International Research Group on
Wood Protection, Stockholm, Sweden. Shimada, M., D.A. Ma, Y. Akamatsu and T. Hattori, 1994. A proposed role of oxalic
acid in wood decay systems of wood-rotting Basidiomycetes. FEMS Microbiolgy
Reviews. 13: 285-296.
Wilcox, W.W., 1978. Review of literature on the effects of early stages of decay on
wood strength. Wood Fiber. 9: 252-257. Zabel, R.A. and Morrel J.J., 1992. Wood Microbiology, Decay and Its Prevantion.
Academic Press, Inc., San Diego, California.
Thank you for copying data from http://www.arastirmax.com