You are here

PACKET LOSS PROBABILITY ESTIMATION USING ERLANG B AND M/G/1/K MODELS IN MODERN VOIP NETWORKS

Journal Name:

Publication Year:

Abstract (2. Language): 
The paper presents an approach to packet loss probability estimation in modern VoIP networks. Our proposal is based on statistical characteristics of telecommunication networks and VoIp traffic packet flows. We adapted simple Erlang B model that is widely used for classic telecommunication networks dimensioning and analyze its potential applicability to modern convergent IP networks. Furthermore we derived M/G/1/K model of aggregated data flow to study influence of queue size on packet loss probability. At last we verified the model outcome and applicability using extensive simulations using NS2 software.
FULL TEXT (PDF): 
1483-1491

REFERENCES

References: 

[1] A. K. Erlang, “The Theory of Probabilities and Telephone
Conversations”, In Nyt Tidsskrift for Matematik, 1909, vol.
20, no. B, p. 33 – 39, Available at: .
T. Mišuth and I. Baroňák/ IU-JEEE Vol. 12(2), (2012), 1483-1491
1491
[2] Ch. Grimm, G. Schlüchtermann, “IP Traffic Theory and Performance”, Springer, Berlin, Heidelberg, Germany, 2008, ISBN 978-3-540-70603-8.
[3] M. Kováčik, “Hodnotenie kvality služieb VoIP”, Slovak VoIP Telephony, Banská Bystrica, Slovakia, 2010-09-29/30, Avaliable at: .
[4] L1 ASSOCIATES, “An Introduction to VoIP” L1 Assocates, [s.l], 2003-12-18, Available at: .
[5] S. Kľúčik, A. Tisovský, “Queuing Systems in Multimedia Networks”, In “Elektrorevue”, vol. 15, art. no 99, Nov 2010, ISSN 1213-1539.
[6] H. Schulzrinne, “Audio codecs”, Columbia University, New York, USA, 2008-10-01, Available at: .
[7] Diagnostic Strategies, “Traffic Modeling and Resource Allocation in Call Centers”. Diagnostic Strategies, Needham, Mass., USA, 2003.
[8] E. Chromy, et. al.., “Markov Models and Their Use for Calculations of Important Traffic Parameters of Contact Center”, In WSEAS TRANSACTIONS on COMMUNICATIONS, issue 11, vol. 10, November 2011, ISSN: 1109 2742, pp. 341-350.
[9] G. Bolch, et al., “Queuing Networks and Markov Chains,” 2nd ed, John Wiley, Hoboken, New Jersey, USA, c2006, 878 p, ISBN 0-471-56525-3.
[10] J. F Hayes, T. V. J Ganesh Babu, “Modeling and Analysis of Telecommunications Networks,” 1st. ed., John Wiley, Hoboken, New Jersey, USA, c2004, 399 p, ISBN 0-471-34845-7.
[11] J. Polec, T. Karlubíková, “Stochastic models in telecommunications 1”, 1st ed., FABER, Bratislava, Slovakia, 1999.
[12] G. Koole, “Call Center Mathematics: A scientific method for understanding and improving contact centers”, Vrije Universiteit , Amsterdam, Netherland, Available at: .
[13] L. Unčovský, “Stochastic models of operational analysis, 1st ed., ALFA, Bratislava, Slovakia, 1980.
[14] E. Chromý, M. Kavacký, “Asynchronous Networks and Erlang Formulas”, In International Journal of Communication Networks and Information Security, vol. 2, no. 2, 2010, ISSN 2073-607X, p. 85-89
[15] S. K. Bose, “Analysis of a M/G/1/K Queue without Vacations”, Indian Institute of Technology, Guwahati, India.
[16] H. Schulzrinne, “RFC 3551, RTP Profile for Audio and Video Conferences with Minimal Control”, Columbia University, [s.l.], 2003, Available at: .

Thank you for copying data from http://www.arastirmax.com