[1] F. Albertini and E. D. Sontag, “For neural networks, function determines form.” Neural Networks, vol. 6, pp. 975-990, 1992.
[2] C. J. Andreeski, C.J. and G. .M. Dimirovski, Theory, Design and Implementation of Memory ANN Based Computational Technique for Identification of MIMO Non-linear Dynamical Processes, ASE-FEE Technical Research Rep. NNSID-03/ASE00. Skopje, MK: SS Cyril & Methodius University, 2000.
A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 915
Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI
[3] V. I. Arnold, “Some questions of approximation and representation of functions.” In: Proceedings of the International Congress of Mathematicians, pp. 339-348. (Translation in English: American Mathematical Society Translations, Vol. 53). Moscow, RUS: MEI Press, 1958.
[4] K. J. Aström, P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger, and R. Sanz, Eds., Control of Complex Systems. London, UK: Springer-Verlag, 2001.
[5] C. Bishop, Neural Networks for Pattern Recognition. Oxford, UK: Clarendon, 1995.
[6] S. Chen, C. F. N. Cowan, and P. M. Grant, ”Orthogonal least squares learning algorithm for radial basis function networks.” IEEE Trans. Neural Networks, vol. 2, no. 2, pp. 302-309, 1991.
[7] T. Chen and H. Chen, “Approximation of continuous functionals by neural networks with applications to dynamic systems.” IEEE Trans. Neural Networks, vol. 4, no. 3, pp. 910-918, 1993.
[8] G. M. Dimirovski, I.I. Ivanoska, M.J. Stankovski, R.A. Pessu, A. Zakeri and N.E. Gough. “Life-like systems: ANN emulation modelling in intelligent control systems.” In: Proceedings of the 3rd APCA Intl. Conf. on Automatic Control, A. Dourado et al., Eds., vol. 1, pp. 169-176. Coimbra, PT: Assoc. Portuguesa de Controlo Automatico and University of Coimbra, 1998.
[9] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd ed.). New York, NY: Macmillan, 1999.
[10] H. Katsuura and D. A. Sprecher, “Computational aspects of Kolmogorov’s theorem.” Neural Networks, vol. 7, pp. 455-461, 1994.
[11] S. Mcloone and G. W. Irwin, “Fast parallel of-line training of multilayer perceptrons.” IEEE Trans. Neural Networks, vol. 8, no. 3, pp. 646-653, 1997.
[12] W. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks for Control. Cambrdige, MA: MIT Press, 1992.
[13] K. S. Narendra and K. Parthasarathy, “Identification and control using of dynamical systems neural networks.” IEEE Trans. Neural Networks, vol. NN-1, no. 1, pp. 4-27, 1990.
[14] D. T. Pham and L. Xing, Neural Networks for Identification, Prediction and Control. London, UK: Springer-Verlag, 1997.
[15] R. Parisi, E. D. Diclandid, G. Orlandi, and B. D. Rao, “A generalized learning paradigm exploiting the structure of feedforward neural networks.” IEEE Trans. Neural Networks, vol. 7, no. 6, pp. 1450-1460, 1996.
[16] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neuron networks for identification and control of dynamical systems.” IEEE Trans. Neural Networks, vol. NN-5, no. 2, pp. 306 –319, 1994.
[17] D. A. Sprecher, “A numerical implementation of Kolmogorov’s superposition II.” Neural Networks, vol. 10, pp. 447-457, 1997.
[18] P. J. Werbos, “Backpropagation through time: What it does and how to do it.” IEEE Proceedings, vol. 78, pp. 1550-1560, 1990.
Thank you for copying data from http://www.arastirmax.com