[1] Ramuhalli. P., Neural network based
iterative algorithms for solving electromagnetic
NDE inverse problems, Ph.D. dissertation, Dept.
Elect. Comp. Eng, Iowa Univ, USA, 2002.
[2] Coccorese. E., Martone. R., Morabito. F. C.,
"A neural network approach for the solution of
electric and magnetic inverse problems", IEEE
Trans. Magnetics, Vol: 30, No: 5, pp. 2829-
2839, 1994.
[3] Hoole. S. R. H., "Artificial neural networks
in the solution of inverse electromagnetic field
problems", IEEE Trans. Magnetics, Vol: 29, No:
2, pp. 1931-1934, 1993.
[4] Ramuhalli. P., Udpa. L., Udpa. S. S., "Finite
element neural networks for solving differential
equations", IEEE Trans. Neural Networks, Vol:
16, No: 6, pp. 1381-1392, 2005.
[5] Wong. P. M., Nikravesh. M., "Field
applications of intelligent computing
techniques", J. Petrol Geolog, Vol: 24, No: 4,
pp. 381-387, 2001.
[6] Fanni. A., Montisci. A., "A neural inverse
problem approach for optimal design", IEEE
Trans. Magnetics, Vol: 39, No: 3, pp. 1305-
1308, 2003.
[7] Haykin. S., Neural networks: A
comprehensive foundation, Englewood Cliffs,
NJ: Prentice-Hall, New York, 1999.
[8] Turchenko. I. V., "Simulation modelling of
multi-parameter sensor signal identification
using neural networks", Proc. 2nd IEEE Int Conf.
Intelligent Systems, Bulgaria, 2004, pp. 48-53.
[9] De Alcantara. N.P., Alexandre. J., De
Carvalho. M., "Computational investigation on
the use of FEM and ANN in the non-destructive
analysis of metallic tubes", Proc. 10th Biennial
Conf. Electromagnetic Field Computation, Italy,
2002.
[10] Jain. A. K., Mao. J., Mohiuddin. K. M.,
Artificial neural networks: a tutorial, Computer,
pp. 31-44, 1996.
[11] Mehrotra. K., Mohan. C. K., Ranka. S.,
Elements of artificial neural networks, MA: MIT
Press, Cambridge, 1997.
[12] Cherubini. D., Fanni. A., Montisci. A.,
Testoni. P., "A fast algorithm for inversion of
MLP networks in design problems", COMPEL.
Int. J. Comp and Math in Electric and Electro
Eng, Vol: 24, No: 3, pp. 906-920, 2005.
[13] Chari. M. V. K., Salon. S. J., Numerical
methods in electromagnetism, CA: Academic,
San Diego, 2000.
COMPUTATIONAL INVESTIGATION ON THE USE OF FEM AND MLP NEURAL NETWORK IN THE INVERSE PROBLEM
OF DEFECTS IDENTIFICATIONS
T. HACIB ,M. R. MEKIDECHE , N. FERKHA
548
[14] Silvester. P. P. and Ferrari. R. L., Finite
elements for electrical engineers, Univ Press,
Cambridge, 1996.
[15] Raida. Z., Modeling EM tructures in the
neural network toolbox of MATLAB, IEEE
Antenna’s and propagation Magazine, Vol: 44,
No: 6, pp. 46-67, 2002.
[16] Partial Differential Equation Toolbox
user’s guide, for use with MATLAB, The Math
Works Inc.
[17] Han. W., Que. P., "2D defect
reconstruction from MFL signals based on
genetic optimization algorithm", Proc. 1st IEEE
Int Conf. Industrial Technology, China, 2005,
pp. 508-513.
[18] Chady. T., Enokizono. M., Sikora. R.,
Todaka. T., Tsuchida. Y., "Natural crack
recognition using inverse neural model and
multi-frequency eddy current method", IEEE
Trans. Magnetics, Vol: 37, No: 4, pp. 2797-
2799, 2001.
[19] Hagan. M. T., Menhaj. M., "Training
feed-forward networks with the Levenberg-
Marquardt algorithm", IEEE Trans Neural
Networks, Vol: 5, No: 6, pp. 989-993, 1994.
Thank you for copying data from http://www.arastirmax.com