[1] B. Sahiner, H.P. Chan, “Classification of
mass and normal breast tissue: a convolution
neural network classifier with spatial domain and
texture images”, IEEE T. Med Imaging, 15:598-
610, 1996.
[2] C.C. Boring, T.S. Squires, “Cancer
statistics”, CA-A Cancer J Clin, 44:7-26, 1994.
[3] H.C. Zuckerman, “The role of mammograph
in the diagnosis of breast cancer, in Breast
Cancer, Diagnosis and Treatment”, I. M. Ariel
and J. B. Cleary. Eds. McGraw-Hill, New York,
1987.
[4] H.P. Chan, K. Doi, “Improvement in
radiologists’ detection of clustered microcalcifications
on mammograms: the potential of
computer-aided diagnosis”, Invest Radiol,
25:1102-1110,1990.
[5] Wang T C, Karayiannis N B, “Detection of
microcalcifications in digital mammograms
using wavelets” IEEE T Med Imaging, 17:498-
509, 1989.
[6] Bruce L M, Adhami R R, “Classifying
mammographic mass shapes using the wavelet
transform modulus-maxima method”, IEEE T
Med Imaging 18:1170-1177, 1999.
[7] S.G. Mallat, “A theory of multiresolution
signal decomposition: the wavelet representation”,
IEEE T. Pattern Anal, 1980, 11:674–
693.
[8] R.N. Bracewell, “The Fourier Transform and
its Applications”, McGraw-Hill, New York,
1999.
[9] V. Vapnik, “Statistical learning theory”,
Wiley, New York, 1998.
[10] K.R. Muller, S. Mika, “An introduction to
kernel-based learning algorithms”, IEEE T.,
Neural Network, 2001, 12:181-201.
[11] I. El-Naqa, Y. Yang, “A support vector
machine approach for detection of microcalcifications
in mammogram”, IEEE T. Med
Imaging, 2002, 21:1552-1563.
[12] C.M. Brislawn, “Fingerprints go digital”,
Notices Amer Math Soc., 1995, 42:1278-1283.
[13] M. Al-qdah, A.R. Ramli, “Detection of
calcifications in mammography using wavelets”,
Student Conference on Research and
Development (SCORcD) Proceedings, 2003,
Putrajaya, Malaysia.
[14] Mathsoft Wavefet resources, A great
collection of theory and application oriented
articles on the web at http://mw.mthsof.cod
wavelets.html, 1997.
[15] S. Chaplot, L.M. Patnaik, “Classification of
magnetic resonance brain images using wavelets
as input to support vector machine and neural
network”, Biomedical Signal Processing and
Control, 2006, 1:86-92.
[16] R.C. Gonzalez, R.E. Woods, “Digital Image
Processing”, Prentice Hall, New Jersey, 2002.
[17] Koenderink J (1984) The structure of
images. Biol Cybern 50:363-370.
[18] V.N. Vapnik, “An overview of statistical
learning theory”, IEEE T. Neural Network, 1999
10:988-999.
[19] K. Polat, S. Gunes, “Breast cancer diagnosis
using least square support vector machine”,
Digital Signal Process. “in press”, 2006.
[20] E.D. Übeyli, “ECG beats classification
using multiclass support vector machines with
error correcting output codes”, Digital Signal
Process.,17:675-684, 2007.
[21] A. Bazzani, A.D. Bevilacqua, “Automatic
detection of clustered microcalcifications in
digital mammograms using an SVM classifier”,
ESANN’2000 proceedings, European Symposium
on Artificial Neural Networks, Bruges,
Belgium, 2000.
[22] P.A. Devijver, J. Kittler, “Pattern Recognition:
A Statistical Approach”, Prentice-Hall,
London, 1982.
Mammographic Mass Classification Using Wavelet Based Support Vector Machine
Pelin GORGEL , Ahmet SERTBAS, Niyazi KILIC, Osman N. UCAN, Onur OSMAN
875
[23] C.C. Chang, C.J. Lin, LIBSVM:a library for
support vector machines, Software available
athttp://www.csie.ntu.edu.tw/~cjilin/libsvm2001.
[24] A.F. Laine, S., “Schuler Mammographic
feature enhancement by multiscale analysis”,
IEEE T. Med Imaging, 13:725-740,1994.
Thank you for copying data from http://www.arastirmax.com