You are here

KÖMÜRLEŞME SÜRECİ VE PALEOORTAM ÖZELLİKLERİNİN BELİRLENMESİNDE BİYOMARKER VERİLERİNİN KULLANIMIKANGAL KÖMÜRLERİ (SİVAS, TÜRKİYE)

THE COALIFICATION PROCESS AND USE OF BIOMARKER DATA IN THE DETERMINATION OF PALEOENVIRONMENTAL CHARACTERISTICS - KANGAL COALS (SIVAS, TURKEY)

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
This study has done related to organic geochemical features of Kangal coal field coals, which were developed in a limnic depositional environment and contains the coal fields of Hamal, Etyemez and Kalburçayırı in the south of the Sivas Basin. Around Kalburçayırı, two coal seams with a thickness of approximately 10 m are currently being exploited in open-cast mining and used in the nearby lignite-fired Kangal power station. Jurassic–Cretaceous and Eocene aged rocks form the basement of the basin. The Upper Miocene-Lower Pliocene rocks have been subdivided into the Kalburcayırı and the Bicir formations. Kalburçayırı formation consists of two lignite seams, which are associated with siltstone, tuff, claystone, and marl. Bicir Formation is composed of marl and clayey limestone. Pliocene-Quaternary volcanic rocks and Quaternary alluviums are the youngest units outcroping in the environs of Kalburçayırı. The collected organic geochemical data indicate that the coals of the Kangal Basin are formed in a limnic basin. The compositions of biomarkers imply that the coal-forming plants were mostly angiosperms, but with minor contribution of gymnosperms. The type and abundance of hopane detected in the Kangal coals imply bacterial activity and also an immature to early-mature stage for the organic matter or a diagenetic alteration of the biomass, as confirmed by huminite-reflectance measurements.
Abstract (Original Language): 
Bu çalışma kapsamında, Sivas Havzası’nın güneyinde yer alan Hamal, Etyemez ve Kalburçayırı kömür sahalarını içeren, limnik depolanma ortamında gelişmiş Kangal kömür sahası kömürlerinde organik jeokimyasal bir değerlendirme gerçekleştirilmiştir. Kalburçayırı civarında kalınlıkları yaklaşık 10 m olan iki kömür damarı açık işletme yoluyla işletilmekte ve yakınındaki Kangal Termik santralinde kullanılmaktadır. Kangal Havzası’nda Jura-Kretase ve Eosen yaşlı kayaçlar havzanın temel kayaçlarını oluşturur. Üst Miyosen-Alt Pliyosen yaşlı kayaçlar ise Kalburçayırı ve Bicir Formasyonu olarak iki alt kısıma ayrılmıştır. Kalburçayırı Formasyonu silttaşı, kiltaşı, tüf ve marnlarla ardalanmalı iki kömür damarı içerirken, Bicir Formasyonu; marn ve killi kireçtaşlarından oluşur. Pliyosen-Kuvaterner yaşlı volkanikler ve Kuvaterner yaşlı alüvyonlar yüzeyleyen en genç birimlerdir. Kangal Havzası kömürleri, edinilen organik jeokimyasal verilere göre limnik ortamda oluşmuştur. Biyomarker bileşimleri, kömürü oluşturan bitkilerin çoğunlukla angiosperm, az miktarda ise gymnospermlerden olduğunu işaret eder. Kangal kömürlerinde izlenen hopanların tip ve bollukları, bakteriyel faaliyeti ve ayrıca organik maddenin olgunlaşmamış-erken olgun seviyesini veya organik yığışımın diyajenetik bozunmasını hüminit yansıma ölçümleri ile uyumlu olarak belirtir.
19-37

REFERENCES

References: 

Amcaoğlu, O., 1973, Sivas-Kangal linyit araştırmaları
hakkında rapor, MTA Raporu, 32 s. Ankara,
(Yayımlanmamış).
American Society for Testing and Materials (ASTM)
D5307-97, 2002, Standard Test Method for
Determination of Boiling Range Distribution of
Crude Petroleum by Gas Chromatography. In: 2004
Annual Book of ASTM Standards, Gaseous Fuels;
Coal and Coke, vol. 05.06. ASTM, Philadelphia,
PA, 245-247.
Arfaouni, A., Montacer, M., Kamoun, F., and
Rigane, A., 2007, Comparative study between
Rock-Eval pyrolysis and biomarker parameters: a
case study of Ypresian source rocks in centralnorthern
Tunisia, Marine and Petroleum Geology,
24, 566-578.
Bechtel, A., Gruber, W., and Sachsenhofer, RF.,
2003, Depositional environment of the Late Miocene
Hausruck lignite (Alpine Foreland Basin): insights
from petrography, organic geochemistry, and stable
carbon isotopes, Int. Jour. Of Coal Geol., 53, 153-
180.
Bechtel, A., Saschsenhofer, R.F., Zdravkov, A.,
Kostova, I., and Gratzer, R., 2005, Influence of
floral assemblage, facies and diagenesis on
petrography and organic geochemistry of the Eocene
Bourgas coal and the Miocene Maritza-East lignite
(Bulgaria), Org. Geochemistry, 36, 1498-1522.
Bray, E.E., and Evans, E.D., 1961, Distribution of nparaffins
as a clue for recognition of source beds.
Geochim. Cosmochim. Acta 22, 2-15.
Burwood R., Leplat, P., Mycke, B., and Paulet, J.,
1992, Rifted margin source rock deposition: a
carbon isotope and biomarker study of a West
African Lower Cretaceous “Lacustrine” Section,
Org. Geochemistry, 19, 41-52.
Connan, J., 1993, Molecular geochemistry in oil
exploration. In: M.L. Bordenave, Editor, Applied
Petroleum Geochemistry, Editions Technip, Paris,
pp: 175-204.
Connan, J., Bouroullec, J., Dessort, D., and Albrecht,
P., 1986, The microbial input in carbonate-anhydrite
facies of a Sabkha paleoenvironment from
Guatemala: a molecular approach, Org.
Geochemistry, 10, 29-50.
Cranwell, P, Eglinton, G., and Robinson, N., 1987,
Lipids of aquatic organisms as potential contributors
to lacustrine sediments- 2., Org. Geochemistry 11,
513-527.
Davis, R.C., Noon, S.W., and Harrington, J., 2007,
The petroleum potential of Tertiary coals from
Western Indonesia: Relationship to mire type and
sequence stratigraphic setting. Int. Jour. Of Coal
Geol., 70, 35-52.
Eglinton, G., and Hamilton, R.J., 1967, Leaf
epicuticular waxes, Science 156, 1322-1335.
Espitalié, J., Deroo, G., and Marquis F., 1985, La
pyrolyse Rock-Eval et ses applications
(deuxiémepartie), Revue Institut Francais du Pétrole,
40, 755-784.
Flores, D., 2002, Organic facies and depositional
palaeoenvironment of lignites from Rio Maior Basin
(Portugal), Int. Jour. Of Coal Geol., 48, 181-195.
Flores, D., Gama Pereira, L.C., Ribeiro, J., Pina, B.,
Marques, M.M., Ribeiro, M.A., Bobos, I., and A.
Pinto de Jesus, 2010, The Buçaco Basin (Portugal):
Organic petrology and geochemistry study, Int. Jour.
Of Coal Geol., 81, 4, 281-286.
Fu, X., Wang, J., Zeng, Y., Li, Z., and Wang, Z., 2009,
Geochemical and palynological investigation of the
Shengli River marine oil shale (China): Implications
for paleoenvironment and paleoclimate, Int. Jour. Of
Coal Geol., 78, 3, 217-224.
Giger, W. and Schaffner, C., 1977, Aliphatic, olefinic
and aromatic hydrocarbons in recent sediments of a
highly eutrophic lake. In: R. Campos and J. Goni,
Editors, Advances in Organic Geochemistry, 1975,
Pergamon, Oxford, 375-390.
Görür, N., Tüysüz O., and Şengör, A.M.C., 1998,
Tectonic evolution of the Central Anatolian basins.
International Geology Review, 40, 831-850.
Gürdal, G., 1998, Geochemistry of trace elements in
Çan coal (Miocene), Çanakkale, Turkey, Int. Jour. of
Coal Geol, 74, 28-40.
Hanson, A.D., Zhang, C., Moldowan, J.M., Liang,
D.G., and Zhang, B.M., 2000, Molecular organic
geochemistry of the Tarim Basin, Northwest China,
Bulletin of the American Association of Petroleum
Geologists 84, 1109-1128.
Has, F., ve Yılmaz, B., 1976, Sivas-Kangal
Kalburçayırı kömür yatağı fizibilite araştırması,
MTA Rap. No. 5729, Ankara, 1-14.
Huang, W.Y., and Meinschein, W.G., 1979, Sterols as
ecological indicators, Geochimica Cosmochimica
Acta 43, 739-745.
Hunt, J.M., 1995, Petroleum Geochemistry and
Geology, W.H. Freeman and Company, New York,
pp: 743.
Hoşgörmez, H., Yalçın, M.N., Cramer, B., Gerling,
P., Faber, E., Schaefer, R.G., and Mann, U., 2002,
Isotopic and molecular composition of coal bed gas
in the Amasra region (Zonguldak basin-western
Black Sea), Org. Geochemistry, 33, 1429-1439.
Iordanidis, A., and Georgakopoulos, A., 2003,
Pliocene lignites from Apofysis mine, Amynteo
basin, Northwestern Greece: petrographical
characteristics and depositional environment. Int.
Jour. Of Coal Geol., 54, 57-68.
İnan, S., 2007, Coalbed gas of biogenic origin in the
Miocene Soma Basin (Western Turkey). 23rd
International Meeting on Organic Geochemistry,
The Riviera International Conference Centre,
Torquay.
Karayiğit, A.İ., Gayer, R.A., and Demirel, İ.H., 1998,
Coal rank and petrography of Upper Carboniferous
coal seems in the Amasra coalfield, Turkey, Int.
Jour. Of Coal Geol., 36, 277-294.
Karayigit, A. I., Gayer, R. A., Querol, X., and
Onacak, T., 2000, Contents of major and trace
elements in feed coals from Turkish coal-fired
power plants. Int. Jour. Of Coal Geol., 44, 169-184.
Karayiğit, A.İ., Gayer, R.A., Engin Ortaç, F.E., and
Goldsmith, S., 2001, Trace elements in the Lower
Pliocene fossiliferous Kangal lignites, Sivas,
Turkey, Int. Jour. Of Coal Geol., 47, 2, 73-89.
Kalkreuth, W.D., Marchioni, D., Calder, J.,
Lamberson, M., Naylor, R., and Paul, J., 1991,
The relationship between coal petrography and
depositional environments from selected coal basins
in Canada, Int. Jour. Of Coal Geol., 19, 21-76.
Ketin, İ., 1966, Anadolu’ nun Tektonik birlikleri, MTA
Dergisi, 66, 20-34.
Kurtman, F., 1973, Sivas-Hafik-Zara ve İmranlı
bölgesinin jeolojik ve tektonik yapısı, MTA Derg.,
80, 1-32.
Kolcon, I., and Sachsenhofer, R.F., 1999,
Petrography, palynology and depositional
environments of the Early Miocene Oberdorf lignite
seam (Styrian Basin, Austria), Int. Jour. Of Coal
Geol., 41, 275-308.
Konyalı, Y., 1969, Etyemez (Akcaşar) bölgesi jeolojisi
ve bölgesinin linyit imkanları, MTA Rap. No. 653,
Ankara, 5 s.
Korkmaz, S., and Kara Gülbay, R., 2007, Organic
geochemical characteristics and depositional
environments of the Jurassic coals in the Western
Taurus of Southern Turkey, Int. Jour. Of Coal Geol.,
70, 4, 292-304.
Kvenvolden, K.A., and Simoneit, B.R.T., 1990,
Hydrothermal derived petroleum examples from
Guaymas Basin, Gulf of California, and Escabana
Trough, northeast Pacific Ocean, AAPG, 74, 223-
237.
Lafarqué, E., Marquis, F., and Pilot, D., 1998, Rock-
Eval 6 applications in hydrocarbon exploration,
Production, and soil contamination studies, Revue
De L’Institut Français Du Petrole, 53, 4.
Matsumoto, G.I., Akiyama, M.,Watanuki, K., and
Torii, T., 1990, Unusual distribution of long-chain
n-alkanes and n-alkenes in Antarctic soil. Org.
Geochem. 15, 403-412.
McKirdy, D.M., Thorpe, C.S., Haynes, D.E., Grice,
K., Krull, E.S., Halverson, G.P., and Webster,
L.J., 2010, The biogeochemical evolution of the
Coorong during the mid- to late Holocene: An
elemental, isotopic and biomarker perspective. Org.
Geochemistry, 41, 2, 96-110.
Meyers, P.A., 1994, Preservation of elemental and
isotopic source identification of sedimentary organic
matter. Chemical Geology, 114: 289-302.
Narin, R., ve Kavuşan G., 1993, Sivas-Kangal-
Kalburçayırı linyit yatağının jeolojisi, C.Ü. Müh.
Fak. Derg., Seri A, Yerbilimleri, 10, 1, 43-47.
Narin, R., 1985, Sivas-Kangal-Kalburçayırı linyit
yatağının jeolojisi ve fizibilitesinin incelenmesi,
(Yüksek Lisans Tezi), A.Ü. Fen Fak. Ankara.
Otto, A., Simoneit, B.R.T., and Rember, W.C., 2005,
Conifer and angiosperm biomarker in clay sediments
and fossil plants from the Miocene Clarkia
Formation, Idaho, USA. Org. Geochem., 36, 907-
922.
Palmer, C.A., Tuncali E., Dennen K.O., Coburn
T.C., and Finkelman, R.B., 2004, Characterization
of Turkish coals: a nationwide perspective, Int. Jour.
Of Coal Geol., 60, 85-115.
Peters, K.E., 1986, Guidelines for evaluating petroleum
source rock using programmed pyrolysis, AAPG
Bull., 70, 318-329.
Peters, K.E., and J.M. Moldowan,. 1993, The
Biomarker Guide: Interpreting Molecular Fossils in
Petroleum and Ancient Sediments, Prenctile-Hall,
Englewood Cliffs, NJ.
Peters, K.E., Snedden, J.W., Sulaeman, A., Sarg,
J.E., and Enrico, R.J., 2000, A new geochemicalsequence
stratigraphic model for the Mahakam Delta
and Makassar Slope, Kalimantan, Indonesia, AAPG
Bull., 84, 12-44.
Peters, K.E., Walters, C.C., and Moldowan, J.M.,
2004, The Biomarker Guide, Biomarkers and
Isotopes in Petroleum Exploration and Earth History
(second ed.), Vol: 2, Cambridge, pp: 475-1155.
Petersen, H.I., 2002, A re-consideration of the “oil
window” for humic coal and kerogen type III source
rocks, Journal of Petroleum Geology, 25, 407-432.
Querol, X., Alastuey, A., Lopez-Solar, A., Plana, F.,
Mesas, A., Ortiz, L., Alzaga, R., Bayona, J.M.,
and J. de la Rosa, 1999, Physico-chemical
characterisation of atmospheric aeresols in a rural
area affected by the Aznacollar toxic spill, south west Spain during soil remediation activities. Sci.
Tot. Environment, 242, 89–103.
Seifert, W.K., and Moldowan, J.W., 1981,
Paleoreconstruction by biological markers,
Geochimica et Cosmochimica Acta 45, 783-794.
Sezgül Kayseri, M., and Akgün, F., 2008,
Palynostratigraphic, palaeovegetational and
palaeoclimatic investigations on the Miocene
deposits in Central Anatolia (Çorum Region and
Sivas Basin). Turkish Journal of Earth Sciences, 17,
361-403.
Siavalas, G., Linou M., Chatziapostolou A.,
Kalaitzidis S., Papaefthymiou H., and Christanis
K., 2009, Palaeoenvironment of Seam I in the
Marathousa Lignite Mine, Megalopolis Basin
(Southern Greece), Int. Jour. Of Coal Geol., 78, 233-
248.
Snowdon, L.R., 1991, Oil from type III organic matter:
resinite revisited. Org. Geochemistry 17, 6, 743-747.
Şen, O., and Saraç, C., 2000, Geology and evaluation
of Kalburçayırı (Kangal-Sivas) lignite basin by
block kriging, Geological Bull. of Turkey, 43, 21-
31.
Şengör, A.M.C., 1979, Mid-Mesozoic closure of
Permo- Triassic Tethys and its implications: Nature,
279, 590-593.
Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P.,
Köster, J., Schouten, S., Hayes, and de Leeuw, J.
W., 1995, Evidence for gammacerane as an
indicator of water column stratification. Geochimica
et Cosmochimica Acta, 59, 1895-1900.
Stach, E., Mackowsky, M.Th., Teichmüller, M.,
Taylor, G.H., Chandra, D., and Teichmüller, R.,
1982, Textbook of Coal Petrology. 3rd ed.,
Borntraeger, Berlin, pp: 535.
Sun, Y., Sheng G., Peng P., and Fu J., 2000,
Compound-specific analysis as a tool for correlating
coal-sourced oils and interbedded shale-sourced oils
in coal measures: an example from Turpan Basin,
Org. Geochemistry, 31, 1349-1362.
Taylor, G.H., Teichmüller, M., Davis, A., Diessel,
C.F.K., Littke, R., and Robert, P., 1998, Organic
Petrology. Gebrüder Borntraeger, Berlin, pp: 704 pp.
Tercan, A.E., and Karayiğit, A.İ., 2001, Estimation of
lignite reserve in the Kalburçayırı field, Kangal
Basin, Sivas Turkey, Int. Jour. Of Coal Geol., 47,
91-100.
Tetiker, S., 2003, Sivas-Kangal Havzası Kalburçayırı
kömür yatağının inorganik mineralojisi ve
Jeokimyası, (Yüksek Lisans Tezi), C.Ü. Fen Bil.
Ens., 120 s.
Ten Haven, H.L., de Leeuw, J.W., Rullkotter, J., and
Sinninghe Damste, J.S., 1987, Restricted utility of
the pristane/phytane ratio as a palaeonvironmental
indicator, Nature, 330, 641-643.
Tissot, B.P., and Welte, D.H., 1984, Petroleum
Formation and Occurrence: Springer-Verlag, Berlin,
pp: 699.
Tuncalı, E., Çifci, B., Yavuz, N., Toprak, S., Köker,
A., Ayciık, H., Gençer, A., and Şahin, N., 2002,
Chemical and Technological Properties of Turkish
Tertiary Coals, MTA, Ankara.
Tuncalı, E., and Ocakoğlu, F., 1995, Türkiye'nin
kömür potansiyeli, rezervleri ve 21. yüzyılda kömür,
Kömür Teknolojisi ve Kullanımı Semineri III, 19-
26.
Tümer, Ü., ve Konyalı, Y., 1963, Sivas-Kangal linyit
etütleri MTA Rap. No. 6151, Ankara.
Toprak, S., 2009, Petrographic properties of major coal
seams in Turkey, and their formation. Int. Jour. Of
Coal Geol., 78, 263-275.
Waples, D.W., and Machihara, T., 1991, Biomarkers
for geologists—a practical guide to the application
of steranes and triterpanes in petroleum geology,
AAPG, 9, 91.
Wilkins, R.W.T., and George, S.C., 2002, Coal as a
source rock for oil: a review, Int. Jour. Of Coal
Geol., 50, 317-361.
Utku, M., 1976, The report of the Sivas-Kangal coal
basin, rap. no: 5608, MTA, Ankara, pp: 38.
Volkman, J.K., 1986, A review of sterol markers for
marine and terrigenous organic matter, Org.
Geochem., 9, 83-99.
Yalçın, M.N., 1994a, Kömür Kökenli Doğal Gaz -
Zonguldak yöresinde alternatif bir enerji kaynağı,
Türkiye 6. Enerji Kongresi, Teknik Oturum
Tebliğleri,3, İzmir, 26-38.
Yalçın, M.N., 1994b, Zonguldak Havzasındaki kömürlü
birimlerin ana kaya potansiyeli, Türkiye 10. Petrol
Kongresi, Bildiriler, Jeoloji, Ankara, 249-260.
Yalçın, M.N., Schenk, H.J., and Schaefer, R.G., 1994.
Modelling of gas generation in coals of the
Zonguldak Basin (NW Turkey), Int. Jour. Of Coal
Geol., 25, 2, 195-212.
Yalçın, M.N., Schaefer, R.G., and Mann, U., 2007,
Methane generation from Miocene lacustrine coals
and organic-rich sedimentary rocks containing
different types of organic matter, Fuel, 86, 4, 504-
511.
Yalçın Erik, N., and Sancar, S., 2010, Relationships
between coal-quality and organic-geochemical
parameters: a case study of the hafik coal deposits
(Sivas Basin, Turkey), Int. Jour. Of Coal Geol., 83,
396-414.
Yalçın Erik, N., ve Toprak, S., 2010, Kangal (Sivas)
Kömürlerinin Organik Jeokimyasal, Organik
Petrografik Özellikleri ve Hidrokarbon Türüm
Potansiyelleri, TÜBİTAK ÇAYDAG Proje No:
108Y111, 190 s.

Thank you for copying data from http://www.arastirmax.com