You are here

Gölbaşı Harmanlı (Adıyaman) Kömürlerinin Organik Jeokimyasal ve Petrografik Özellikleri

Organic Geochemical and Petrographic Properties of Gölbaşı Harmanlı (Adıyaman) Coals

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
This study was carried out in Gölbaşı-Harmanlı (Adıyaman) region where coal basin exists. Chemical, petrographical and organic geochemical analyses of the Tertiary aged coals were taken into consideration. Coal quality investigation along with proximate (moisture, volatile matter, fixed carbon,ash) and elemental analyses (C, H, O, S, N) were performed. The huminite reflectances of organically abundant matter and coal levels were found to be between 0.28% and 0.516% which refer to low maturity levels. This parameter is compatible with fluorescence colors, calorific value (average original 2736 - dry 3727 Kcal/kg) and average Tmax (422 oC). Organic matters of the investigated coals exhibit a low grade transformation, due to a low lithostatic pressure on them. In GC analyses, n-alkanes with low carbon numbers as n-C17, n-C27, n-C30 and n-C3 and CS2 as well as benzen were detected. Triterpanoid component was determined with GC-MS data and tends to imply high ground continental vegetation, but gammacera values to hypersaline depositional conditions. Gölbaşı coals show sub-bituminous and lignite coalification ranks. Rock Eval analysis results show TYPE II/III and III kerogen, with average Tmax value is 422 oC, and corresponding to the immature and premature rank for hydrocarbon generation. The coals are characterised with their abundance of huminite maceral group with small amount of inertinite and liptinite macerals. Mineral matters of the Gölbaşı coals are calcite, clays, and sulfur bearing minerals.
Abstract (Original Language): 
Bu çalışma, Adıyaman–Gölbaşı–Harmanlı Mevkii’nde yer alan kömür oluşumunun olduğu havzada yapılmıştır. Tersiyer yaşlı kömürlerin kimyasal ve petrografik analizleri yapılmış, organik jeokimyasal özellikleri değerlendirilmiştir. Kömür kalite değerlendirmesi, kimyasal (nem, uçucu madde, sabit karbon, kül) ve elementer analizler (C, H, O, S, N) yapılarak ortaya konmuştur. Hüminit Ro yansıtma değerleri organik maddece zengin ve kömürlü düzeylerde %0.28 ve %0.516 arasında değişmekte olup, düşük olgunluk düzeyine karşılık gelmektedir. Bu parametre floresans renkleri, kalorifik değer (ortalama orijinal 2736, kuru 3727 Kcal/kg) ve ortalama Tmax (422 Co) ile uyumludur. İncelenen kömürlerde organik maddeler düşük litostatik basınç nedeniyle düşük dereceli dönüşüm gösterir. GC analizinde, n-C17, n-C27, n-C30 ve n-C3 gibi düşük karbon sayılı n-alkanlar ile CS2 ve benzen belirlenmiştir. Örneklerin GC-MS verileri triterpanoid bileşenleri mevcut olduğu saptanmış ve bunların yüksek karasal bitki bileşimlerine, gammacceran değerlerinin ise hipersalin çökelim koşullarına işaret ettiği sanılmaktadır. Organik petrografik analizlere ve kimyasal analiz verilerine bağlı olarak, Gölbaşı kömürlerinin düşük olgunlaşma derecesi gösterdikleri ve alt-bitümlü kömür - linyit kömürleşme derecelerine sahip olduğu belirlenmiştir. Rock-Eval analiz sonuçları TİP II/III karışımı ve TİP III kerojeni, ortalama 422 Co Tmax değeri hidrokarbon türümü için olgunlaşmamış ve erken olgun düzeyi ifade eder. Kömürler baskın olarak hüminit maserallerinden meydana gelmekte, az miktarlarda da inertinit ve liptinit maseralleri içermektedirler. Gölbaşı kömürleri egemen olarak gelinit olmak üzere yüksek hüminit içerikleri ile karakteristiktir. Mineral maddeleri ise başlıca kalsit, killer ve sülfürlü minerallerdir.
43-76

REFERENCES

References: 

Altunsoy, M., Özçelik, O., 1993. Organik fasiyesler,
Jeoloji Mühendisliği Dergisi, 43, 34-39.
Arfaouni, A., Montacer, M., Kamoun, F., Rigane, A.,
2007. Comperative study between Rock-Eval
pyrolysis and bio-markers parameters: a case
study of Ypresian source rocks in centralnorthern
Tunisia. Marine and Petroleum
Geology, 24, 566-578.
ASTM, 1983. Annual book of ASTM standards.
Gaseous Fuels; Coal and Coke (D-388-82, D-
2798-79, D-3172-73, D-2799-72, D-3174-82,
D-3175-82): 1916 Race Street, Philadelphia, PA
19103, 05.05, 520p.
Aydoğan, M., 1985. Adıyaman-Gölbaşı-Harmanlı
linyit havzası değerlendirme raporu, Ankara,
MTA rapor no: 7695(yayınlanmamış), 23s.
Bechtel, A., Saschsenhofer, R.F., Zdravkov, A.,
Kostova, I., Gratzer, R., 2005. Influence of
floral assemblage, facies and diagenesis on
petrography and organic geochemistry of the
Eocene Bourgas coal and the Miocene Maritza
East lignite (Bulgaria). Organic Geochemistry,
36, 1498–1522.
Boggs, S. Jr., 1987. Principles of Sedimentology and
Stratigraphy. Merill Publishing Company:A
Bell&Howell Company, Columbus Toronto
London Melbourne, 784p.
Bray, E. E., Evans, E. D., 1961. Distribution of nparaffins
as a clue for recognition of source
beds. Geochimica et Cosmochimica Acta, 22, 2-
15.
Connan, J., 1993. Molecular geochemistry in oil
exploration (in: M. L. Bordenave, Editor).
Applied Petroleum Geochemistry, Editions
Technip, Paris, 175-204.
Diessel, K., 1986. The correlation between coal
facies and depositional environments. Advances
in the Study of the Sydney Basin. Proceedings
of 20
th
Symposium, The University of
Newcastle, 19-22.
Durand, B., Niçaise, G., 1980. Procedures for
kerogen isolation. In: Durand, B. (Ed.),
Kerogen, insoluble organic matter from
sedimentary rocks. Techniq, Paris, 35-53.
Durand, B., Paratte, M., 1983. Oil potential of coals:
a geochemical approach. In: Brooks, J. (Ed.),
Petroleum Geochemistry and Exploration of
Europe, The Geological Society Special
Publication, 12, 255-265.
Erik, Y.N., Sancar, S., Toprak, S., 2008. Hafik
kömürlerinin (Sivas) organik jeokimyasal ve
organik petrografik özellikleri. Türkiye Petrol
Jeologları Bülteni, 20 (2), 9-33.
Espitalié, J., La Porte, J.L., Madec, M., Marquis, F.,
Le Plat, P., Paulet, J., Boutefeu, A., 1977.
Methodé Rapide De Caractérisation Des Roches
Méres De Leur Potentiel Pétrolier Et De Leur
Degré D‟Évolution. Rev. L‟Inst. Francais
pétrole, 32 (1), 23-42.
Espitalié, J., Deroo, G., Marquis, F., 1985. La
pyrolyse Rock-Eval et ses applications
(deuxiémepartie). Revue Institut Francais du
Pétrole, 40, 755-784.
Flores, D., 2002. Organic facies and depositional
palaeoenvironment of lignites from Rio Maior
Basin (Portugal). International Journal of Coal
Geology, 48, 181-195.
Fowler, M.G., Gentzis, T., Goodarzi, F., Foscolos,
A. E., 1991. The petroleum potential of some Tertiary lignites from northern Greece as
determined using pyrolysis and organic
petrological techniques. Organic Geochemistry,
17, 805-826.
Georgakopoulos, A., Valceva, S., 2000. Petrographic
characteristics of Neogene Lignites from the
Ptolemais and Servia basins, Northern Greece.
Energy Sources, 22, 587-602.
Gökmen, V., Memikoğlu, O., Dağlı, M., Öz, D.,
Tuncalı, E., 1993. Türkiye Linyit Envanteri.
Maden Tetkik ve Arama Genel Müdürlüğü,
Ankara, 356s.
Hubbard, B., 1950. Coal as a possible petroleum
source rock. American Association of
Petroleum Geologists Bulletin, 34 (12), 2347-
2359.
Hunt, J.M., 1995. Petroleum Geochemistry and
Geology. W. H. Freeman and Company, New
York, 743p.
International Committee for Coal and Organic
Petrology (ICCP), 1998. The new vitrinite
classification. Fuel, 77, 349-358.
International Committee for Coal and Organic
Petrology (ICCP), 2001. The new inertinite
classification. Fuel, 80, 459-471.
Iordanidis, A. ve Georgakopoulos, A., 2003. Pliocene
lignites from Apofysis mine, Amynteo basin,
Northwestern Greece: Petrographical
characyteristics and depositional environment.
International Journal of Coal Geology, 54, 57-
68.
İnan, S., 2007. Coalbed gas of biogenic origin in the
miocene Soma Basin (Western Turkey). 23
rd
International Meeting on Organic
Geochemistry, The Riviera International
Conference Centre, Turkey, 2s.
Jackson, K.S., Hawkins, P.J., Bennett, A.J.R., 1985.
Regional facies and geochemical evolution of
Southern Denison Trough. Australian Petroleum
Exploration Association Journal, 20, 143-158.
Kalkreuth, W., Keuser, C., Fowler, M., Li, M.,
Mcintyre, D., Püttmann, W., Richardson, R.,
1998. The petrology, organic geochemistry and
palynology of Tertiary age Eureka Sound Group
coals, Arctic Canada. Organic Geochemistry,
29, 799-809.
Kavak, O., 2010. Petroleum properties of Karaboğaz
formation in Adıyaman oil field at South East
Turkey through organic geochemical studies.
Chemistry and Technology of Fuels and Oils, 6
(562), 30-38.
Kolcon, I., Sachsenhofer, R.F., 1999. Petrography,
palynology and depositional environments of
the early Miocene Oberdof lignite seam,
(Styrian Basin, Austria). International Journal of
Coal Geology, 4, 275-308.
Korkmaz, S., Kara Gülbay, R., 2007. Organic
geochemical characteristics and depositional
environments of the Jurassic coals in the
Western Taurus of Southern Turkey.
International Journal of Coal Geology, 70 (4),
292-304.
Kvenvolden, K.A., Simoneit, B. R. T., 1990.
Hydrothermal derived petroleum examples from
Guaymas Basin, Gulf of California, and
Escabana Trough, north-east Pacific Ocean.
American Association of Petroleum Geologists,
74, 223-237.
Langford, F.F., Blanc-Valleron, M. M., 1990.
Interpreting Rock-Eval pyrolysis data using
graphs of pyrolizable hydro-carbons vs. total
organic carbon. American Association of
Petroleum Geologists Bulletin 74, 799-804.
Moldowan, M., Seifert, W. K., E. J. 1985. Gallegos,
Relationship between petroleum composition
and depositional environment of petroleum
source rocks. American Association of
Petroleum Geologists Bulletin, 69, 1255-1268.
Mukhopadhyay, P.K., Wade, J.A., Kruge, M.A.,
1995. Organic facies and maturation of
Jurassic/Cretaceous rocks, and possible oilsource
rock correlation based on pyrolysis of
asphaltenes: Scotian Basin, Canada. Organic
Geochemistry, 22 (1), 85-104.
Peters, K.E., 1986. Guidelines for evaluating
petroleum source rock using pro-grammed
pyrolysis. American Association of Petroleum
Geologists Bulletin, 70, 318-329.
Peters K. E., Moldowan, J. M., 1993. The Biomarker
Guide: Interpreting molecular fossils in
petroleum and ancient sediments. Prenctice-
Hall, Englewood Cliffs, New Jersey, 363p.
Soykan 1997. Adıyaman-Gölbaşı Soykan kömür
işletmeleri tanıtımı ve gelişimi, Ankara, 135s.
Stach, E., Mackowsky, M.-Th., Teichmüller, M.,
Taylor, G. H., Chandra, D., Teichmüller, R.,
1982. Stach's Textbook of Coal Petrology.
Gebrüder Borntraeger, Berlin, 535p.
Teichmüller, M., Durand, B., 1983. Fluorescence
microscopical rank studies on liptinites and
vitrinites in peat and coals, and comparison with
results of the Rock-Eval pyrolysis. International
Journal of Coal Geology, 2, 197- 230.
Teichmüller, M., Littke, R., Taylor, G.H., 1998. The
Origin of Organic Matter in Sedimentary Rocks
(In Taylor, G.H., Teicmüller, M., Davis, A.,
Diessel, C.F.K., Littke, R., Robert, P., (eds).
Organic petrology, Gebrüder Borntraeger,
Berlin, 704p.
Ten Haven, H. L., De Leeuw, J. W., Rullkotter, J.,
Sinninghe Damste, J. S., 1987. Restricted utility
of the pristane/phytane ratio as a
paleoenvironmental indicator. Nature, 330, 641-
643.
Tissot, B.P., Welte, D.H., 1984. Petroleum Formation
and Occurrence. Springer-Verlag, Berlin, 699p.
Toprak, S., 1996. Alpagut - Dodurga (Osmancık -
Çorum) bölgesi çevresindeki kömürlerin oluşum
ortamları ve özelliklerinin belirlenmesi.
Hacettepe Üniversitesi Fen Bilimleri Enstitüsü,
Ankara, Doktora tezi, 168s (yayımlanmamış).
Toprak, S., 2009. Petrographic properties of major
coal seams in Turkey and their formation.
International Journal of Coal Geology, 78, 263-
275.
Van Krevelen, D.W., 1961. Coal. Elsevier Publishing
Company, Amsterdam, 514p.
Waples, D. W., Machihara, T., 1991. Biomarkers for
geologists-a practical guide to the application of
steranes and triterpanes in petroleum geology.
American Association of Petroleum Geologists
Bulletin, 9, 91p.
Yalçın, M.N., Schaefer, R.G., Mann, U., 2007.
Methane generation from Miocene lacustrine
coals and organic-rich sedimentary rocks
containing different types of organic matter.
Fuel, 86 (4), 504-511.

Thank you for copying data from http://www.arastirmax.com