You are here

Coğrafi Bilgi Sistemleri Tabanlı Heyelan Duyarlılık Haritalarının Hazırlanmasına Bir Örnek: Çayeli (Rize, KD Türkiye)

An Example for Preparation of GIS-Based Landslide Susceptibility Maps: Çayeli (Rize, NE Türkiye)

Journal Name:

Publication Year:

Abstract (2. Language): 
Landslides are leading natural disasters occurring in the Black Sea Region, which is one of the regions receiving a great deal of rain and which is the roughest one in our country, particularly the Eastern Black Sea. In the region, the damage caused by landslides is greater than that caused by earthquakes in the long term. In this study, the landslides that occurred in Çayeli in July 2002 as a result of heavy rain were investigated and the landslide susceptibility map was prepared for the study area. Initially, a landslide inventory map was created and 149 landslides in total were mapped. Based on field investigations, the factors of lithology-weathering, slope angle, slope aspect, landcover, elevation and proximity to river were evaluated as the parameters causing the landslides. Using topographical and thematic maps, the parameter maps were created in Geographical Information Systems (GIS) environment,. Associating the maps with the current landslides, their frequency ratio values were determined. In the light of these evaluations, it is thought that completely weathered dacite and pyroclastics, and completely weathered andesite-basalt and pyroclastics are effective in the landslide occurrence. The slope classes between 0º and 20º, northward-northeastward slopes and the elevation classes between 0 and 200 m were regarded as significant according to the obtained values. Similarly, landcover classes from agricultural and settlement area, and proximity to river classes between 0 - 100 m are parameter classes considered significant in paired comparisons. Then, weighted values were calculated and by taking these values into account, a landslide susceptibility map was created. Finally, to analyse the performance of the map, the current landslides and the susceptibility map were compared and 81% of current landslides were determined to be situated in susceptible, highly susceptible and very highly susceptible areas
Abstract (Original Language): 
Ülkemizin en fazla yağış alan ve engebeli bölgelerinden biri olan Karadeniz Bölgesi’nde ve özellikle de Doğu Karadeniz Bölümü’nde meydana gelen doğal afetlerin başında heyelanlar gelmektedir. Bölge açısından heyelanların oluşturduğu hasar, uzun vadede dikkate alındığında, depremden daha fazladır. Bu çalışmada, Çayeli yöresinde 2002 yılı temmuz ayındaki sağanak yağış sonucunda meydana gelen heyelanlar araştırılmış ve inceleme alanının heyelan duyarlılık haritası hazırlanmıştır. İlk olarak heyelan envanter haritası oluşturulmuş ve toplam 149 adet heyelan haritalanmıştır. Arazi incelemeleri sonucunda litoloji-ayrışma, yamaç eğimi, yamaç eğim yönü, arazi örtüsü, yükseklik, akarsuya yakınlık faktörleri, heyelana neden olan parametreler olarak değerlendirilmiştir. İnceleme alanına ait topoğrafik ve tematik haritalar kullanılarak Coğrafi Bilgi Sistemleri (CBS) tabanında parametre haritaları üretilmiştir. Haritalar mevcut heyelanlarla ilişkilendirilerek frekans oranı değerleri belirlenmiştir. Bu değerlendirmelere göre, tamamen ayrışmış dasit ve piroklastitleri ile tamamen ayrışmış andezit-bazalt ve piroklastitlerinin heyelan oluşumunda etkili olduğu düşünülmektedir. Yine eğim sınıflarından 0º - 20º arası, yamaç eğim yönü sınıflarından kuzey-kuzeydoğuya bakan yamaçlar, topoğrafik yükseklik sınıflarından 0 - 200 m arasındaki yükseklik sınıfları elde edilen değerlere göre önemli görülmüştür. Benzer şekilde tarımsal alan ve yerleşim alanlarından oluşan arazi sınıfları ile 0 - 100 m arasındaki akarsuya yakınlık sınıfları da ikili karşılaştırmalarda önemli olarak değerlendirilen parametre sınıflarıdır. Daha sonra ağırlık değerleri hesaplanmış ve bu değerler dikkate alınarak heyelan duyarlılık haritası üretilmiştir. Son olarak üretilen haritanın performansını analiz etmek için mevcut heyelanlarla duyarlılık haritası karşılaştırılmış ve mevcut heyelanların % 81’inin duyarlı, yüksek ve çok yüksek duyarlı alanlarda bulunduğu belirlenmiştir.
35-62

REFERENCES

References: 

Akgün, A., Bulut, F., 2007. GIS-based landslide
susceptibility for Arsin-Yomra (Trabzon, North
Turkey) region. Environmental Geology, 51,
1377-1387.
Akgün, A., Dağ, S., Bulut, F., 2008. Landslide
susceptibility mapping for a landslide-prone
area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination
models. Environmental Geology, 54, 1127-1143.
Akgün, A., Türk, N., 2010a. Landslide susceptibility
mapping for Ayvalik (Western Turkey) and
its vicinity by multicriteria decision analysis.
Environmental Earth Science, 61, 595–611.
Akgün, A., Türk, N., 2010b. İki ve çok değişkenli
istatistik ve sezgisel tabanlı heyelan duyarlılık
modellerinin karşılaştırılması: Ayvalık
(Balıkesir, Kuzeybatı Türkiye) örneği. Jeoloji
Mühendisliği Dergisi, 34 (2), 85-112.
Ayalew, L., Yamagishi, H., Ugawa, N., 2004.
Landslide susceptibility mapping using gıs-based weighted linear combination, The case in
Tsugawa area of Agano River, Niigate prefecture,
Japan. Landslides, 1, 73-81.
Ayalew, L., Yamagishi, H., 2005. The application
of GIS-based logistic regression for landslide
susceptibility mapping in the Kakuda-Yahiko
mountains, Central Japan. Geomorphology, 65
(1-2), 15-31.
Baeza, C., Corominas, J., 2001. Assessment of
shallow landslide susceptibility by means of
multivariate statistical techniques. Earth Surface
Processes and Landforms, 26, 1251-1263.
Barnard, P.L., Owen, L.A., Sharma, M.C., Finkel,
R.C., 2001. Natural and humaninduced
landsliding in the Garhwal Himalaya of Northern
India. Geomorphology, 40, 21-35.
Choubey, V.D., Chaudhari, S., Litoria, P.K., 1992.
Landslide hazard zonation in Uttarkashi and
Tehri Districts P. Himalaya, India. Proceeding
6th International Symposium on Landslides,
Christchurch, 911-917.
Çan, T., Nefeslioğlu, H.A., Gökçeoğlu, C., Sönmez, H.,
Duman, T.Y., 2005. Susceptibility assessments of
Dağ ve Bulut
Coğrafi Bilgi Sistemleri Tabanlı Heyelan Duyarlılık Haritalarının Hazırlanmasına Bir Örnek: Çayeli (Rize, KD Türkiye) 60
shallow earthflows triggered by heavy rainfall at
three catchments by logistic regression analyses.
Geomorphology, 72, 250-271.
Çevik, E., Topal, T., 2003. GIS-Based Landslide
Susceptibility Mapping for a Problematic
Segment of the Natural Gas Pipeline, Hendek
(Turkey). Environmental Geology, 44, 949-962.
Dağ, S., Bulut, F., Akgün, A., 2006. İki değişkenli
istatistiksel analiz yöntemi ile Çayeli (Rize) ve
çevresindeki heyelanların değerlendirilmesi.
1. Heyelan Sempozyumu, Trabzon, Bildiriler
Kitabı, 84.
Dağ, S., 2007. Çayeli (Rize) ve çevresinin istatistiksel
yöntemlerle heyelan duyarlılık analizi. Karadeniz
Teknik Üniversitesi Fen Bilimleri Enstitüsü,
Trabzon, Doktora Tezi, 241 s (yayımlanmamış).
Dai, F.C., Lee, C.F., Xu, Z.W., 2001. Assessment of
Landslide Susceptibility on the Natural Terrain
of Lantau Island, Hong Kong. Environmental
Geology, 40 (3), 381-391.
Dai, F.C., Lee, C.F., 2001. Terrain-based mapping
of landslide susceptibility using a geographical
ınformation system: A case study. Canadian
Geotechnical Journal, 38, 911-923.
Donati, L., Turrini, M.C., 2002. An objective method
to rank the importance of the factors predisposing
to landslides with the GIS methodology:
Application to an area of the Apennines
(Valnerina; Perugia, Italy). Engineering Geology,
63, 277-289.
Ercanoğlu, M., Gökçeoğlu, C., 2002. Assessment of
Landslide Susceptibility for a Landslide-Prone
Area (North of Yenice, NW Turkey) by Fuzzy
Approach. Environmental Geology, 41, 720-730.
Ercanoğlu, M., 2003. Bulanık Mantık ve İstatistiksel
Yöntemlerle Heyelan Duyarlılık Haritalarının
Üretilmesi: Batı Karadeniz Bölgesi (Kumluca
Güneyi - Yenice Kuzeyi)” Doktora Tezi,
Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü,
203 s. (yayınlanmamış).
Environmental Systems Research Institute, 1996,
Using ArcView GIS, United States of America.
Fell, R., Corominas, J., Bonnard, C., Cascini, L.,
Leroi, E., Savage, W.Z., 2008. Guidelines for
landslide susceptibility, hazard and risk zoning
for land use planning. Engineering Geology,
102, 85-98.
Fernandez, C.I., Del Castillo, T.F., El Hamdouni, R.,
Montero, J.C., 1999. Verification of landslide
susceptibility mapping: A case study. Earth
Surface Process and Landforms, 24, 537-544.
Guillande, R., Gelugne, P., Bardintzeff, J.M., Brousse,
R., Chorowich, J., Deffontaines, B., Parrot, J.F.,
1993. Cartographie automatique de zones a aleas
de mouvement de terrain sur ı’ile de Tahiti a
partir de donnees digitales. Bulletin de la Societe
Geologique de France, 164 (4), 577-583.
Gökçeoğlu, C., Aksoy, H., 1996. Landslide
susceptibility mapping of the slopes in the
residual soils of the Mengen Region (Turkey)
by deterministic stability analyses and image
processing techniques. Engineering Geology,
44, 147-161.
ISRM (International Society for Rock Mechanics),
1981. ISRM Suggested Methods; Rock
Characterization, Testing and Monitoring.
Pergamon Press, London, 211 p.
Korkmaz, S., Gedik, A., 1988. Rize-Fındıklı-Çamlıhemşin arasında kalan bölgenin jeolojisi
ve petrol oluşumları. Jeoloji Mühendisleri Odası
Yayını, 32-33, 5-15.
Lee, C.F., Ye, H., Yeung, M.R., Shan, X., Chen, G.,
2001. A GIS-Based Methodology for Natural
Terrain Landslide Susceptibility Mapping in
Hong Kong. Episodes, 24 (3),150-159.
Araştırma Makalesi/ Research Article
Jeoloji Mühendisliği Dergisi 36 (1) 2012 61
Journal of Geological Engineering 36 (1) 2012
Lee, S., Chwae, U., Min, K., 2003. Landslide
susceptibility mapping by correlation between
topography and geological structure: The
Janghung Area, Korea. Geomorphology, 46,
9-162.
Lee, S., 2005. Application of logistic regression model
and its validation for landslide susceptibility
mapping using GIS and remote sensing data.
International Journal of Remote Sensing, 26 (7),
1477-1491.
Luzi, L., Pergalani, F., 1999. Slope instability in static
and dynamic conditions for urban planning:
The “Oltre Po Pavese” case history (Region
Lombardia-Italy). Natural Hazards., 20, 57-82.
Mejia-Navarro, M., Wohl, E.E., 1994. Geological
hazard and risk evaluation using GIS:
Methodology and model applied to modellin,
Colombia. Bulletin of the International
Association of Engineering Geology, 31 (4),
459-481.
MİGM (Meteoroloji İşleri Genel Müdürlüğü), 2007,
Ankara, 4s.
Nagarajan, R., Roy, A., Vinod Kumar, R., Mukherjee,
A., Khire, M.V., 2000. Landslide hazard
susceptibility mapping based on terrain and
climatic factors for tropical monsoon regions.
Bulletin of Engineering Geology and the
Environment, 58, 275-287.
Nefeslioğlu, H.A., Gökçeoğlu C., Sönmez H., 2008.
An assessment on the use of logistic regression
and artificial neural networks with different
sampling strategies for the preparation of
landslide susceptibility maps. Engineering
Geology, 97, 171-191.
Ohlmacher, G.C., Davis, J.C., 2003. Using multiple
logistic regression and GIS technology to predict
landslide hazard in Northeast Kansas, USA.
Engineering Geology, 69, 331-343.
Pachauri, A.K., Pant, M., 1992. Landslide Hazard
Mapping Based on Geological Attributes.
Engineering Geology, 32, 81-100.
Peloquin, S., Gwyn, Q.H.J., 2000. Using remote
sensing, GIS and artificial ıntelligence to evaluate
landslide susceptibility levels: Application in the
Bolivian Andes. 4thInternational Conferance On
Inteqrated GIS Environment Modules, Canada,
26-37.
Pradhan, S., Lee, B., 2010. Regional landslide
susceptibility analysis using back-propagation
neural network model at Cameron Highland,
Malaysia. Landslides, 7, 13-30.
Rautella, P., Lakhera, R.C., 2000. Landslide risk
analysis between giri and ton rivers in Himachal
Himalaya (India). International Journal of
Applied Earth Observation and Geoinformation,
2 (3-4), 153-160.
Santacana, N., Baeza, B., Corominas, J., Paz, A.D.,
Marturia, J., 2003. A GIS-based multivariate
statistical analysis for shallow landslide
susceptibility maping in La Pobla de Lillet area
(Eastern Pyrenees, Spain). Natural Hazards, 30,
281-295.
Süzen, M.L., 2002. Data Driven Landslide Hazard
Assessment Using Geographical Information
System and Remote Sensing. Middle East
Technical University Graduate School of Natural
and Applied Sciences Geological Engineering
Department, PhD. Thesis, Ankara, 196 p.
(unpublished).
Soeters, R.S., Van Westen, C.J., 1996. Slope
Instability Recognition, Analysis and Zonation.
In Landslides: Investigation and Mitigation A.K.
Turner and R.L. Schuster (eds.). Transportation
Research Board, National Research Council,
Special Report-247, National Academy Press,
Washington DC, 129-177.
Temesgen, B., Mohammed, M.U., Korme, T., 2001.
Natural hazard assessment using gis and remote
Dağ ve Bulut
Coğrafi Bilgi Sistemleri Tabanlı Heyelan Duyarlılık Haritalarının Hazırlanmasına Bir Örnek: Çayeli (Rize, KD Türkiye) 62
sensing methods, with particular reference to the
landslides in the Wondogenet Area, Ethiophia.
Physics and Chemistry of the Earth, 26 (9), 665-675.
Van Westen, C.J., 1993. Remote Sensing and
Geographic Information Systems for Geological
Hazard Mitigation. The Faculty of Geo-Information Science and Earth Observation
Journal, 4, 393-399.
Wilson, J.P., Gallant, J.C., 2000. Terrain Analysis
Principles and Application, John Wiley & Sons,
Canada, 479 p.
Yalçın, A., Bulut, F., 2007. Landslide susceptibility
mapping using GIS and digital photogrametric
techniques; a case study from Ardeşen (NE-Turkey). Natural Hazard, 41, 201-226.
Yalçın, A., 2008. GIS-based landslide susceptibility
mapping using analytical hierarchy process
and bivariate statistics in Ardesen (Turkey):
Comparisons of results and confirmations.
Catena, 72, 1-12.
Yeşilnacar, E., Topal, T., 2005. Landslide susceptibility
mapping: A comparison of logistic regression
and neural networks methods in a medium scale
study, Hendek Region (Turkey). Engineering
Geology, 79, 251-266.
Yılmaz, I., 2009. A case study from Koyulhisar
(Sivas-Turkey) for landslide susceptibility
mapping by Artificial Neural Networks. Bulletin
of Engineering Geology and the Environment,
68 (3), 297-306.

Thank you for copying data from http://www.arastirmax.com